MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0OLD Structured version   Visualization version   GIF version

Theorem ab0OLD 4335
Description: Obsolete version of ab0 4334 as of 8-Sep-2024. (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2814, ax-8 2108. (Revised by Gino Giotto, 30-Aug-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ab0OLD ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem ab0OLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfnul4 4284 . . 3 ∅ = {𝑥 ∣ ⊥}
21eqeq2i 2749 . 2 ({𝑥𝜑} = ∅ ↔ {𝑥𝜑} = {𝑥 ∣ ⊥})
3 dfcleq 2729 . 2 ({𝑥𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}))
4 df-clab 2714 . . . . . 6 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
5 sb6 2088 . . . . . 6 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
64, 5bitri 274 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ ∀𝑥(𝑥 = 𝑦𝜑))
7 df-clab 2714 . . . . . 6 (𝑦 ∈ {𝑥 ∣ ⊥} ↔ [𝑦 / 𝑥]⊥)
8 sbv 2091 . . . . . 6 ([𝑦 / 𝑥]⊥ ↔ ⊥)
97, 8bitri 274 . . . . 5 (𝑦 ∈ {𝑥 ∣ ⊥} ↔ ⊥)
106, 9bibi12i 339 . . . 4 ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ (∀𝑥(𝑥 = 𝑦𝜑) ↔ ⊥))
1110albii 1821 . . 3 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ ∀𝑦(∀𝑥(𝑥 = 𝑦𝜑) ↔ ⊥))
12 nbfal 1556 . . . . 5 (¬ ∀𝑥(𝑥 = 𝑦𝜑) ↔ (∀𝑥(𝑥 = 𝑦𝜑) ↔ ⊥))
1312bicomi 223 . . . 4 ((∀𝑥(𝑥 = 𝑦𝜑) ↔ ⊥) ↔ ¬ ∀𝑥(𝑥 = 𝑦𝜑))
1413albii 1821 . . 3 (∀𝑦(∀𝑥(𝑥 = 𝑦𝜑) ↔ ⊥) ↔ ∀𝑦 ¬ ∀𝑥(𝑥 = 𝑦𝜑))
15 nfna1 2149 . . . 4 𝑥 ¬ ∀𝑥(𝑥 = 𝑦𝜑)
16 nfv 1917 . . . 4 𝑦 ¬ 𝜑
17 pm2.27 42 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 = 𝑦𝜑) → 𝜑))
1817spsd 2180 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
1918equcoms 2023 . . . . . 6 (𝑦 = 𝑥 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
20 ax12v 2172 . . . . . . 7 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
2120equcoms 2023 . . . . . 6 (𝑦 = 𝑥 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
2219, 21impbid 211 . . . . 5 (𝑦 = 𝑥 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
2322notbid 317 . . . 4 (𝑦 = 𝑥 → (¬ ∀𝑥(𝑥 = 𝑦𝜑) ↔ ¬ 𝜑))
2415, 16, 23cbvalv1 2337 . . 3 (∀𝑦 ¬ ∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥 ¬ 𝜑)
2511, 14, 243bitri 296 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥 ∣ ⊥}) ↔ ∀𝑥 ¬ 𝜑)
262, 3, 253bitri 296 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1539   = wceq 1541  wfal 1553  [wsb 2067  wcel 2106  {cab 2713  c0 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-dif 3913  df-nul 4283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator