Step | Hyp | Ref
| Expression |
1 | | eq0 4277 |
. 2
⊢ (((𝐴 ∖ 𝐵) ∩ 𝐶) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ ((𝐴 ∖ 𝐵) ∩ 𝐶)) |
2 | | iman 402 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ↔ ¬ (𝑥 ∈ 𝐶 ∧ ¬ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
3 | | elin 3903 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐴 ∖ 𝐵) ∩ 𝐶) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥 ∈ 𝐶)) |
4 | | eldif 3897 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
5 | 4 | anbi2ci 625 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
6 | | annim 404 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
7 | 6 | anbi2i 623 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐶 ∧ ¬ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
8 | 3, 5, 7 | 3bitri 297 |
. . . . . 6
⊢ (𝑥 ∈ ((𝐴 ∖ 𝐵) ∩ 𝐶) ↔ (𝑥 ∈ 𝐶 ∧ ¬ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵))) |
9 | 2, 8 | xchbinxr 335 |
. . . . 5
⊢ ((𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ↔ ¬ 𝑥 ∈ ((𝐴 ∖ 𝐵) ∩ 𝐶)) |
10 | | ax-2 7 |
. . . . 5
⊢ ((𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) → ((𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵))) |
11 | 9, 10 | sylbir 234 |
. . . 4
⊢ (¬
𝑥 ∈ ((𝐴 ∖ 𝐵) ∩ 𝐶) → ((𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵))) |
12 | 11 | al2imi 1818 |
. . 3
⊢
(∀𝑥 ¬
𝑥 ∈ ((𝐴 ∖ 𝐵) ∩ 𝐶) → (∀𝑥(𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴) → ∀𝑥(𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵))) |
13 | | dfss2 3907 |
. . 3
⊢ (𝐶 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴)) |
14 | | dfss2 3907 |
. . 3
⊢ (𝐶 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵)) |
15 | 12, 13, 14 | 3imtr4g 296 |
. 2
⊢
(∀𝑥 ¬
𝑥 ∈ ((𝐴 ∖ 𝐵) ∩ 𝐶) → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |
16 | 1, 15 | sylbi 216 |
1
⊢ (((𝐴 ∖ 𝐵) ∩ 𝐶) = ∅ → (𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵)) |