MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin0ss Structured version   Visualization version   GIF version

Theorem difin0ss 4396
Description: Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
Assertion
Ref Expression
difin0ss (((𝐴𝐵) ∩ 𝐶) = ∅ → (𝐶𝐴𝐶𝐵))

Proof of Theorem difin0ss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eq0 4373 . 2 (((𝐴𝐵) ∩ 𝐶) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ ((𝐴𝐵) ∩ 𝐶))
2 iman 401 . . . . . 6 ((𝑥𝐶 → (𝑥𝐴𝑥𝐵)) ↔ ¬ (𝑥𝐶 ∧ ¬ (𝑥𝐴𝑥𝐵)))
3 elin 3992 . . . . . . 7 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶))
4 eldif 3986 . . . . . . . 8 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
54anbi2ci 624 . . . . . . 7 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐶) ↔ (𝑥𝐶 ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
6 annim 403 . . . . . . . 8 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
76anbi2i 622 . . . . . . 7 ((𝑥𝐶 ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) ↔ (𝑥𝐶 ∧ ¬ (𝑥𝐴𝑥𝐵)))
83, 5, 73bitri 297 . . . . . 6 (𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) ↔ (𝑥𝐶 ∧ ¬ (𝑥𝐴𝑥𝐵)))
92, 8xchbinxr 335 . . . . 5 ((𝑥𝐶 → (𝑥𝐴𝑥𝐵)) ↔ ¬ 𝑥 ∈ ((𝐴𝐵) ∩ 𝐶))
10 ax-2 7 . . . . 5 ((𝑥𝐶 → (𝑥𝐴𝑥𝐵)) → ((𝑥𝐶𝑥𝐴) → (𝑥𝐶𝑥𝐵)))
119, 10sylbir 235 . . . 4 𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) → ((𝑥𝐶𝑥𝐴) → (𝑥𝐶𝑥𝐵)))
1211al2imi 1813 . . 3 (∀𝑥 ¬ 𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) → (∀𝑥(𝑥𝐶𝑥𝐴) → ∀𝑥(𝑥𝐶𝑥𝐵)))
13 df-ss 3993 . . 3 (𝐶𝐴 ↔ ∀𝑥(𝑥𝐶𝑥𝐴))
14 df-ss 3993 . . 3 (𝐶𝐵 ↔ ∀𝑥(𝑥𝐶𝑥𝐵))
1512, 13, 143imtr4g 296 . 2 (∀𝑥 ¬ 𝑥 ∈ ((𝐴𝐵) ∩ 𝐶) → (𝐶𝐴𝐶𝐵))
161, 15sylbi 217 1 (((𝐴𝐵) ∩ 𝐶) = ∅ → (𝐶𝐴𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2108  cdif 3973  cin 3975  wss 3976  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-nul 4353
This theorem is referenced by:  tz7.7  6421  tfi  7890  lebnumlem3  25014
  Copyright terms: Public domain W3C validator