![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssdif | Structured version Visualization version GIF version |
Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
pssdif | ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3996 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | pssdifn0 4391 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ≠ wne 2946 ∖ cdif 3973 ⊆ wss 3976 ⊊ wpss 3977 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-ss 3993 df-pss 3996 df-nul 4353 |
This theorem is referenced by: pssnel 4494 pgpfac1lem5 20123 fundmpss 35730 dfon2lem6 35752 |
Copyright terms: Public domain | W3C validator |