| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssdif | Structured version Visualization version GIF version | ||
| Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| Ref | Expression |
|---|---|
| pssdif | ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3937 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
| 2 | pssdifn0 4334 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ≠ wne 2926 ∖ cdif 3914 ⊆ wss 3917 ⊊ wpss 3918 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-ss 3934 df-pss 3937 df-nul 4300 |
| This theorem is referenced by: pssnel 4437 pgpfac1lem5 20018 fundmpss 35761 dfon2lem6 35783 |
| Copyright terms: Public domain | W3C validator |