![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssdif | Structured version Visualization version GIF version |
Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
pssdif | ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3982 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | pssdifn0 4373 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ≠ wne 2937 ∖ cdif 3959 ⊆ wss 3962 ⊊ wpss 3963 ∅c0 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-v 3479 df-dif 3965 df-ss 3979 df-pss 3982 df-nul 4339 |
This theorem is referenced by: pssnel 4476 pgpfac1lem5 20113 fundmpss 35747 dfon2lem6 35769 |
Copyright terms: Public domain | W3C validator |