Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pssdif | Structured version Visualization version GIF version |
Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
pssdif | ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3903 | . 2 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) | |
2 | pssdifn0 4297 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) | |
3 | 1, 2 | sylbi 220 | 1 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ≠ wne 2943 ∖ cdif 3881 ⊆ wss 3884 ⊊ wpss 3885 ∅c0 4254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ne 2944 df-v 3425 df-dif 3887 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 |
This theorem is referenced by: pssnel 4402 pgpfac1lem5 19572 fundmpss 33621 dfon2lem6 33645 |
Copyright terms: Public domain | W3C validator |