Step | Hyp | Ref
| Expression |
1 | | metxmet 23395 |
. . . . . . 7
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
2 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐷 ∈ (∞Met‘𝑋)) |
3 | | metsscmetcld.j |
. . . . . . 7
⊢ 𝐽 = (MetOpen‘𝐷) |
4 | 3 | mopntopon 23500 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | 2, 4 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐽 ∈ (TopOn‘𝑋)) |
6 | | resss 5905 |
. . . . . . 7
⊢ (𝐷 ↾ (𝑌 × 𝑌)) ⊆ 𝐷 |
7 | | dmss 5800 |
. . . . . . 7
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ⊆ 𝐷 → dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom 𝐷) |
8 | | dmss 5800 |
. . . . . . 7
⊢ (dom
(𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom 𝐷 → dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷) |
9 | 6, 7, 8 | mp2b 10 |
. . . . . 6
⊢ dom dom
(𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷 |
10 | | cmetmet 24355 |
. . . . . . . 8
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) |
11 | | metdmdm 23397 |
. . . . . . . 8
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → 𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌))) |
12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → 𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌))) |
13 | | metdmdm 23397 |
. . . . . . 7
⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷) |
14 | | sseq12 3944 |
. . . . . . 7
⊢ ((𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌)) ∧ 𝑋 = dom dom 𝐷) → (𝑌 ⊆ 𝑋 ↔ dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷)) |
15 | 12, 13, 14 | syl2anr 596 |
. . . . . 6
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑌 ⊆ 𝑋 ↔ dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷)) |
16 | 9, 15 | mpbiri 257 |
. . . . 5
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ⊆ 𝑋) |
17 | | flimcls 23044 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) |
18 | 5, 16, 17 | syl2anc 583 |
. . . 4
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) |
19 | | simprrr 778 |
. . . . . 6
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝑓)) |
20 | 2 | adantr 480 |
. . . . . . . 8
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐷 ∈ (∞Met‘𝑋)) |
21 | 3 | methaus 23582 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
22 | | hausflimi 23039 |
. . . . . . . 8
⊢ (𝐽 ∈ Haus →
∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) |
23 | 20, 21, 22 | 3syl 18 |
. . . . . . 7
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓)) |
24 | 20, 4 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐽 ∈ (TopOn‘𝑋)) |
25 | | simprl 767 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘𝑋)) |
26 | | simprrl 777 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑌 ∈ 𝑓) |
27 | | flimrest 23042 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝑓) → ((𝐽 ↾t 𝑌) fLim (𝑓 ↾t 𝑌)) = ((𝐽 fLim 𝑓) ∩ 𝑌)) |
28 | 24, 25, 26, 27 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽 ↾t 𝑌) fLim (𝑓 ↾t 𝑌)) = ((𝐽 fLim 𝑓) ∩ 𝑌)) |
29 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑌 ⊆ 𝑋) |
30 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌)) |
31 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(MetOpen‘(𝐷
↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) |
32 | 30, 3, 31 | metrest 23586 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
33 | 20, 29, 32 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
34 | 33 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽 ↾t 𝑌) fLim (𝑓 ↾t 𝑌)) = ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓 ↾t 𝑌))) |
35 | 28, 34 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽 fLim 𝑓) ∩ 𝑌) = ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓 ↾t 𝑌))) |
36 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
37 | 3 | flimcfil 24383 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝑓 ∈ (CauFil‘𝐷)) |
38 | 20, 19, 37 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (CauFil‘𝐷)) |
39 | | cfilres 24365 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑌 ∈ 𝑓) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))) |
40 | 20, 25, 26, 39 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))) |
41 | 38, 40 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑓 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) |
42 | 31 | cmetcvg 24354 |
. . . . . . . . . 10
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑓 ↾t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓 ↾t 𝑌)) ≠ ∅) |
43 | 36, 41, 42 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓 ↾t 𝑌)) ≠ ∅) |
44 | 35, 43 | eqnetrd 3010 |
. . . . . . . 8
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽 fLim 𝑓) ∩ 𝑌) ≠ ∅) |
45 | | ndisj 4298 |
. . . . . . . 8
⊢ (((𝐽 fLim 𝑓) ∩ 𝑌) ≠ ∅ ↔ ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥 ∈ 𝑌)) |
46 | 44, 45 | sylib 217 |
. . . . . . 7
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥 ∈ 𝑌)) |
47 | | mopick 2627 |
. . . . . . 7
⊢
((∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ∧ ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥 ∈ 𝑌)) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 ∈ 𝑌)) |
48 | 23, 46, 47 | syl2anc 583 |
. . . . . 6
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 ∈ 𝑌)) |
49 | 19, 48 | mpd 15 |
. . . . 5
⊢ (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ 𝑌) |
50 | 49 | rexlimdvaa 3213 |
. . . 4
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (∃𝑓 ∈ (Fil‘𝑋)(𝑌 ∈ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝑥 ∈ 𝑌)) |
51 | 18, 50 | sylbid 239 |
. . 3
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) → 𝑥 ∈ 𝑌)) |
52 | 51 | ssrdv 3923 |
. 2
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → ((cls‘𝐽)‘𝑌) ⊆ 𝑌) |
53 | 3 | mopntop 23501 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
54 | 2, 53 | syl 17 |
. . 3
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐽 ∈ Top) |
55 | 3 | mopnuni 23502 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
56 | 2, 55 | syl 17 |
. . . 4
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑋 = ∪ 𝐽) |
57 | 16, 56 | sseqtrd 3957 |
. . 3
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ⊆ ∪ 𝐽) |
58 | | eqid 2738 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
59 | 58 | iscld4 22124 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽)
→ (𝑌 ∈
(Clsd‘𝐽) ↔
((cls‘𝐽)‘𝑌) ⊆ 𝑌)) |
60 | 54, 57, 59 | syl2anc 583 |
. 2
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑌 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑌) ⊆ 𝑌)) |
61 | 52, 60 | mpbird 256 |
1
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽)) |