MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metsscmetcld Structured version   Visualization version   GIF version

Theorem metsscmetcld 24584
Description: A complete subspace of a metric space is closed in the parent space. Formerly part of proof for cmetss 24585. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 9-Oct-2022.)
Hypothesis
Ref Expression
metsscmetcld.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metsscmetcld ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽))

Proof of Theorem metsscmetcld
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metxmet 23592 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
21adantr 482 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐷 ∈ (∞Met‘𝑋))
3 metsscmetcld.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
43mopntopon 23697 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
52, 4syl 17 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐽 ∈ (TopOn‘𝑋))
6 resss 5952 . . . . . . 7 (𝐷 ↾ (𝑌 × 𝑌)) ⊆ 𝐷
7 dmss 5848 . . . . . . 7 ((𝐷 ↾ (𝑌 × 𝑌)) ⊆ 𝐷 → dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom 𝐷)
8 dmss 5848 . . . . . . 7 (dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom 𝐷 → dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷)
96, 7, 8mp2b 10 . . . . . 6 dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷
10 cmetmet 24555 . . . . . . . 8 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
11 metdmdm 23594 . . . . . . . 8 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → 𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌)))
1210, 11syl 17 . . . . . . 7 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → 𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌)))
13 metdmdm 23594 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷)
14 sseq12 3962 . . . . . . 7 ((𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌)) ∧ 𝑋 = dom dom 𝐷) → (𝑌𝑋 ↔ dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷))
1512, 13, 14syl2anr 598 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑌𝑋 ↔ dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷))
169, 15mpbiri 258 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌𝑋)
17 flimcls 23241 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓))))
185, 16, 17syl2anc 585 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓))))
19 simprrr 780 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝑓))
202adantr 482 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐷 ∈ (∞Met‘𝑋))
213methaus 23781 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
22 hausflimi 23236 . . . . . . . 8 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
2320, 21, 223syl 18 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
2420, 4syl 17 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐽 ∈ (TopOn‘𝑋))
25 simprl 769 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘𝑋))
26 simprrl 779 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑌𝑓)
27 flimrest 23239 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑌𝑓) → ((𝐽t 𝑌) fLim (𝑓t 𝑌)) = ((𝐽 fLim 𝑓) ∩ 𝑌))
2824, 25, 26, 27syl3anc 1371 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽t 𝑌) fLim (𝑓t 𝑌)) = ((𝐽 fLim 𝑓) ∩ 𝑌))
2916adantr 482 . . . . . . . . . . . 12 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑌𝑋)
30 eqid 2737 . . . . . . . . . . . . 13 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
31 eqid 2737 . . . . . . . . . . . . 13 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3230, 3, 31metrest 23785 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
3320, 29, 32syl2anc 585 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
3433oveq1d 7356 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽t 𝑌) fLim (𝑓t 𝑌)) = ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)))
3528, 34eqtr3d 2779 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽 fLim 𝑓) ∩ 𝑌) = ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)))
36 simplr 767 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
373flimcfil 24583 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝑓 ∈ (CauFil‘𝐷))
3820, 19, 37syl2anc 585 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (CauFil‘𝐷))
39 cfilres 24565 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑌𝑓) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
4020, 25, 26, 39syl3anc 1371 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
4138, 40mpbid 231 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
4231cmetcvg 24554 . . . . . . . . . 10 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)) ≠ ∅)
4336, 41, 42syl2anc 585 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)) ≠ ∅)
4435, 43eqnetrd 3009 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽 fLim 𝑓) ∩ 𝑌) ≠ ∅)
45 ndisj 4318 . . . . . . . 8 (((𝐽 fLim 𝑓) ∩ 𝑌) ≠ ∅ ↔ ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌))
4644, 45sylib 217 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌))
47 mopick 2626 . . . . . . 7 ((∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ∧ ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌)) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥𝑌))
4823, 46, 47syl2anc 585 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥𝑌))
4919, 48mpd 15 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥𝑌)
5049rexlimdvaa 3150 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (∃𝑓 ∈ (Fil‘𝑋)(𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)) → 𝑥𝑌))
5118, 50sylbid 239 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) → 𝑥𝑌))
5251ssrdv 3941 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → ((cls‘𝐽)‘𝑌) ⊆ 𝑌)
533mopntop 23698 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
542, 53syl 17 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐽 ∈ Top)
553mopnuni 23699 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
562, 55syl 17 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑋 = 𝐽)
5716, 56sseqtrd 3975 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 𝐽)
58 eqid 2737 . . . 4 𝐽 = 𝐽
5958iscld4 22321 . . 3 ((𝐽 ∈ Top ∧ 𝑌 𝐽) → (𝑌 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑌) ⊆ 𝑌))
6054, 57, 59syl2anc 585 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑌 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑌) ⊆ 𝑌))
6152, 60mpbird 257 1 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wex 1781  wcel 2106  ∃*wmo 2537  wne 2941  wrex 3071  cin 3900  wss 3901  c0 4273   cuni 4856   × cxp 5622  dom cdm 5624  cres 5626  cfv 6483  (class class class)co 7341  t crest 17228  ∞Metcxmet 20687  Metcmet 20688  MetOpencmopn 20692  Topctop 22147  TopOnctopon 22164  Clsdccld 22272  clsccl 22274  Hauscha 22564  Filcfil 23101   fLim cflim 23190  CauFilccfil 24521  CMetccmet 24523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-iin 4948  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-er 8573  df-map 8692  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-fi 9272  df-sup 9303  df-inf 9304  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-n0 12339  df-z 12425  df-uz 12688  df-q 12794  df-rp 12836  df-xneg 12953  df-xadd 12954  df-xmul 12955  df-ico 13190  df-icc 13191  df-rest 17230  df-topgen 17251  df-psmet 20694  df-xmet 20695  df-met 20696  df-bl 20697  df-mopn 20698  df-fbas 20699  df-fg 20700  df-top 22148  df-topon 22165  df-bases 22201  df-cld 22275  df-ntr 22276  df-cls 22277  df-nei 22354  df-haus 22571  df-fil 23102  df-flim 23195  df-cfil 24524  df-cmet 24526
This theorem is referenced by:  cmetss  24585  cmssmscld  24619
  Copyright terms: Public domain W3C validator