MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metsscmetcld Structured version   Visualization version   GIF version

Theorem metsscmetcld 23918
Description: A complete subspace of a metric space is closed in the parent space. Formerly part of proof for cmetss 23919. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 9-Oct-2022.)
Hypothesis
Ref Expression
metsscmetcld.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metsscmetcld ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽))

Proof of Theorem metsscmetcld
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metxmet 22944 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
21adantr 483 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐷 ∈ (∞Met‘𝑋))
3 metsscmetcld.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
43mopntopon 23049 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
52, 4syl 17 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐽 ∈ (TopOn‘𝑋))
6 resss 5878 . . . . . . 7 (𝐷 ↾ (𝑌 × 𝑌)) ⊆ 𝐷
7 dmss 5771 . . . . . . 7 ((𝐷 ↾ (𝑌 × 𝑌)) ⊆ 𝐷 → dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom 𝐷)
8 dmss 5771 . . . . . . 7 (dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom 𝐷 → dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷)
96, 7, 8mp2b 10 . . . . . 6 dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷
10 cmetmet 23889 . . . . . . . 8 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
11 metdmdm 22946 . . . . . . . 8 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → 𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌)))
1210, 11syl 17 . . . . . . 7 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → 𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌)))
13 metdmdm 22946 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷)
14 sseq12 3994 . . . . . . 7 ((𝑌 = dom dom (𝐷 ↾ (𝑌 × 𝑌)) ∧ 𝑋 = dom dom 𝐷) → (𝑌𝑋 ↔ dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷))
1512, 13, 14syl2anr 598 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑌𝑋 ↔ dom dom (𝐷 ↾ (𝑌 × 𝑌)) ⊆ dom dom 𝐷))
169, 15mpbiri 260 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌𝑋)
17 flimcls 22593 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓))))
185, 16, 17syl2anc 586 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓))))
19 simprrr 780 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝑓))
202adantr 483 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐷 ∈ (∞Met‘𝑋))
213methaus 23130 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
22 hausflimi 22588 . . . . . . . 8 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
2320, 21, 223syl 18 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓))
2420, 4syl 17 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐽 ∈ (TopOn‘𝑋))
25 simprl 769 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘𝑋))
26 simprrl 779 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑌𝑓)
27 flimrest 22591 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑌𝑓) → ((𝐽t 𝑌) fLim (𝑓t 𝑌)) = ((𝐽 fLim 𝑓) ∩ 𝑌))
2824, 25, 26, 27syl3anc 1367 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽t 𝑌) fLim (𝑓t 𝑌)) = ((𝐽 fLim 𝑓) ∩ 𝑌))
2916adantr 483 . . . . . . . . . . . 12 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑌𝑋)
30 eqid 2821 . . . . . . . . . . . . 13 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
31 eqid 2821 . . . . . . . . . . . . 13 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3230, 3, 31metrest 23134 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
3320, 29, 32syl2anc 586 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
3433oveq1d 7171 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽t 𝑌) fLim (𝑓t 𝑌)) = ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)))
3528, 34eqtr3d 2858 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽 fLim 𝑓) ∩ 𝑌) = ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)))
36 simplr 767 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
373flimcfil 23917 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ (𝐽 fLim 𝑓)) → 𝑓 ∈ (CauFil‘𝐷))
3820, 19, 37syl2anc 586 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (CauFil‘𝐷))
39 cfilres 23899 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝑌𝑓) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
4020, 25, 26, 39syl3anc 1367 . . . . . . . . . . 11 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))))
4138, 40mpbid 234 . . . . . . . . . 10 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
4231cmetcvg 23888 . . . . . . . . . 10 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ∧ (𝑓t 𝑌) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)) ≠ ∅)
4336, 41, 42syl2anc 586 . . . . . . . . 9 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) fLim (𝑓t 𝑌)) ≠ ∅)
4435, 43eqnetrd 3083 . . . . . . . 8 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ((𝐽 fLim 𝑓) ∩ 𝑌) ≠ ∅)
45 ndisj 4327 . . . . . . . 8 (((𝐽 fLim 𝑓) ∩ 𝑌) ≠ ∅ ↔ ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌))
4644, 45sylib 220 . . . . . . 7 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌))
47 mopick 2710 . . . . . . 7 ((∃*𝑥 𝑥 ∈ (𝐽 fLim 𝑓) ∧ ∃𝑥(𝑥 ∈ (𝐽 fLim 𝑓) ∧ 𝑥𝑌)) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥𝑌))
4823, 46, 47syl2anc 586 . . . . . 6 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥𝑌))
4919, 48mpd 15 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥𝑌)
5049rexlimdvaa 3285 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (∃𝑓 ∈ (Fil‘𝑋)(𝑌𝑓𝑥 ∈ (𝐽 fLim 𝑓)) → 𝑥𝑌))
5118, 50sylbid 242 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑥 ∈ ((cls‘𝐽)‘𝑌) → 𝑥𝑌))
5251ssrdv 3973 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → ((cls‘𝐽)‘𝑌) ⊆ 𝑌)
533mopntop 23050 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
542, 53syl 17 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝐽 ∈ Top)
553mopnuni 23051 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
562, 55syl 17 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑋 = 𝐽)
5716, 56sseqtrd 4007 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 𝐽)
58 eqid 2821 . . . 4 𝐽 = 𝐽
5958iscld4 21673 . . 3 ((𝐽 ∈ Top ∧ 𝑌 𝐽) → (𝑌 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑌) ⊆ 𝑌))
6054, 57, 59syl2anc 586 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → (𝑌 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑌) ⊆ 𝑌))
6152, 60mpbird 259 1 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) → 𝑌 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  ∃*wmo 2620  wne 3016  wrex 3139  cin 3935  wss 3936  c0 4291   cuni 4838   × cxp 5553  dom cdm 5555  cres 5557  cfv 6355  (class class class)co 7156  t crest 16694  ∞Metcxmet 20530  Metcmet 20531  MetOpencmopn 20535  Topctop 21501  TopOnctopon 21518  Clsdccld 21624  clsccl 21626  Hauscha 21916  Filcfil 22453   fLim cflim 22542  CauFilccfil 23855  CMetccmet 23857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-icc 12746  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-haus 21923  df-fil 22454  df-flim 22547  df-cfil 23858  df-cmet 23860
This theorem is referenced by:  cmetss  23919  cmssmscld  23953
  Copyright terms: Public domain W3C validator