MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcogend Structured version   Visualization version   GIF version

Theorem xpcogend 14995
Description: The most interesting case of the composition of two Cartesian products. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
xpcogend.1 (𝜑 → (𝐵𝐶) ≠ ∅)
Assertion
Ref Expression
xpcogend (𝜑 → ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐷))

Proof of Theorem xpcogend
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 5714 . . . . . . 7 (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥𝐴𝑦𝐵))
2 brxp 5714 . . . . . . . 8 (𝑦(𝐶 × 𝐷)𝑧 ↔ (𝑦𝐶𝑧𝐷))
32biancomi 462 . . . . . . 7 (𝑦(𝐶 × 𝐷)𝑧 ↔ (𝑧𝐷𝑦𝐶))
41, 3anbi12i 628 . . . . . 6 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐷𝑦𝐶)))
54exbii 1847 . . . . 5 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧) ↔ ∃𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐷𝑦𝐶)))
6 an4 656 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐷𝑦𝐶)) ↔ ((𝑥𝐴𝑧𝐷) ∧ (𝑦𝐵𝑦𝐶)))
76exbii 1847 . . . . 5 (∃𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐷𝑦𝐶)) ↔ ∃𝑦((𝑥𝐴𝑧𝐷) ∧ (𝑦𝐵𝑦𝐶)))
8 19.42v 1952 . . . . 5 (∃𝑦((𝑥𝐴𝑧𝐷) ∧ (𝑦𝐵𝑦𝐶)) ↔ ((𝑥𝐴𝑧𝐷) ∧ ∃𝑦(𝑦𝐵𝑦𝐶)))
95, 7, 83bitri 297 . . . 4 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧) ↔ ((𝑥𝐴𝑧𝐷) ∧ ∃𝑦(𝑦𝐵𝑦𝐶)))
10 xpcogend.1 . . . . . 6 (𝜑 → (𝐵𝐶) ≠ ∅)
11 ndisj 4350 . . . . . 6 ((𝐵𝐶) ≠ ∅ ↔ ∃𝑦(𝑦𝐵𝑦𝐶))
1210, 11sylib 218 . . . . 5 (𝜑 → ∃𝑦(𝑦𝐵𝑦𝐶))
1312biantrud 531 . . . 4 (𝜑 → ((𝑥𝐴𝑧𝐷) ↔ ((𝑥𝐴𝑧𝐷) ∧ ∃𝑦(𝑦𝐵𝑦𝐶))))
149, 13bitr4id 290 . . 3 (𝜑 → (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧) ↔ (𝑥𝐴𝑧𝐷)))
1514opabbidv 5189 . 2 (𝜑 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧)} = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧𝐷)})
16 df-co 5674 . 2 ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧)}
17 df-xp 5671 . 2 (𝐴 × 𝐷) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧𝐷)}
1815, 16, 173eqtr4g 2794 1 (𝜑 → ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  cin 3930  c0 4313   class class class wbr 5123  {copab 5185   × cxp 5663  ccom 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-co 5674
This theorem is referenced by:  xpcoidgend  14996
  Copyright terms: Public domain W3C validator