MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcogend Structured version   Visualization version   GIF version

Theorem xpcogend 14878
Description: The most interesting case of the composition of two Cartesian products. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
xpcogend.1 (𝜑 → (𝐵𝐶) ≠ ∅)
Assertion
Ref Expression
xpcogend (𝜑 → ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐷))

Proof of Theorem xpcogend
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 5665 . . . . . . 7 (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥𝐴𝑦𝐵))
2 brxp 5665 . . . . . . . 8 (𝑦(𝐶 × 𝐷)𝑧 ↔ (𝑦𝐶𝑧𝐷))
32biancomi 462 . . . . . . 7 (𝑦(𝐶 × 𝐷)𝑧 ↔ (𝑧𝐷𝑦𝐶))
41, 3anbi12i 628 . . . . . 6 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐷𝑦𝐶)))
54exbii 1849 . . . . 5 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧) ↔ ∃𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐷𝑦𝐶)))
6 an4 656 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐷𝑦𝐶)) ↔ ((𝑥𝐴𝑧𝐷) ∧ (𝑦𝐵𝑦𝐶)))
76exbii 1849 . . . . 5 (∃𝑦((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐷𝑦𝐶)) ↔ ∃𝑦((𝑥𝐴𝑧𝐷) ∧ (𝑦𝐵𝑦𝐶)))
8 19.42v 1954 . . . . 5 (∃𝑦((𝑥𝐴𝑧𝐷) ∧ (𝑦𝐵𝑦𝐶)) ↔ ((𝑥𝐴𝑧𝐷) ∧ ∃𝑦(𝑦𝐵𝑦𝐶)))
95, 7, 83bitri 297 . . . 4 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧) ↔ ((𝑥𝐴𝑧𝐷) ∧ ∃𝑦(𝑦𝐵𝑦𝐶)))
10 xpcogend.1 . . . . . 6 (𝜑 → (𝐵𝐶) ≠ ∅)
11 ndisj 4320 . . . . . 6 ((𝐵𝐶) ≠ ∅ ↔ ∃𝑦(𝑦𝐵𝑦𝐶))
1210, 11sylib 218 . . . . 5 (𝜑 → ∃𝑦(𝑦𝐵𝑦𝐶))
1312biantrud 531 . . . 4 (𝜑 → ((𝑥𝐴𝑧𝐷) ↔ ((𝑥𝐴𝑧𝐷) ∧ ∃𝑦(𝑦𝐵𝑦𝐶))))
149, 13bitr4id 290 . . 3 (𝜑 → (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧) ↔ (𝑥𝐴𝑧𝐷)))
1514opabbidv 5157 . 2 (𝜑 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧)} = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧𝐷)})
16 df-co 5625 . 2 ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐶 × 𝐷)𝑧)}
17 df-xp 5622 . 2 (𝐴 × 𝐷) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧𝐷)}
1815, 16, 173eqtr4g 2791 1 (𝜑 → ((𝐶 × 𝐷) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  cin 3901  c0 4283   class class class wbr 5091  {copab 5153   × cxp 5614  ccom 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-co 5625
This theorem is referenced by:  xpcoidgend  14879
  Copyright terms: Public domain W3C validator