MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelaneqOLD Structured version   Visualization version   GIF version

Theorem nelaneqOLD 9488
Description: Obsolete version of nelaneq 9487 as of 31-Dec-2025. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nelaneqOLD ¬ (𝐴𝐵𝐴 = 𝐵)

Proof of Theorem nelaneqOLD
StepHypRef Expression
1 elneq 9486 . . 3 (𝐴𝐵𝐴𝐵)
2 orc 867 . . . 4 𝐴𝐵 → (¬ 𝐴𝐵 ∨ ¬ 𝐴 = 𝐵))
3 neneq 2934 . . . . 5 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
43olcd 874 . . . 4 (𝐴𝐵 → (¬ 𝐴𝐵 ∨ ¬ 𝐴 = 𝐵))
52, 4ja 186 . . 3 ((𝐴𝐵𝐴𝐵) → (¬ 𝐴𝐵 ∨ ¬ 𝐴 = 𝐵))
61, 5ax-mp 5 . 2 𝐴𝐵 ∨ ¬ 𝐴 = 𝐵)
7 ianor 983 . 2 (¬ (𝐴𝐵𝐴 = 𝐵) ↔ (¬ 𝐴𝐵 ∨ ¬ 𝐴 = 𝐵))
86, 7mpbir 231 1 ¬ (𝐴𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-pr 5370  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator