|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version | ||
| Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2944 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2939 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-ne 2940 | 
| This theorem is referenced by: necon3ad 2952 necon3ai 2964 2reu4lem 4521 pr1eqbg 4856 fpropnf1 7288 nf1const 7325 nelaneq 9640 gcd2n0cl 16547 lcmfunsnlem2lem1 16676 lcmfunsnlem2lem2 16677 ncoprmgcdne1b 16688 isnsgrp 18737 isnmnd 18752 mulmarep1gsum1 22580 fvmptnn04ifb 22858 tdeglem4 26100 isosctrlem2 26863 nnsge1 28347 structiedg0val 29040 umgr2edgneu 29232 imadifxp 32615 f1resrcmplf1dlem 35101 aks6d1c2p2 42121 xppss12 42269 n0p 45055 supxrge 45354 uzn0bi 45475 elprn1 45653 elprn2 45654 liminflbuz2 45835 itgcoscmulx 45989 fourierdlem41 46168 elaa2 46254 sge0cl 46401 meadjiunlem 46485 hoidmvlelem2 46616 hspmbllem1 46646 | 
| Copyright terms: Public domain | W3C validator |