Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version |
Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2947 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon3ad 2955 necon3ai 2967 2reu4lem 4453 pr1eqbg 4784 disjprgw 5065 fpropnf1 7121 nf1const 7156 nelaneq 9288 gcd2n0cl 16144 lcmfunsnlem2lem1 16271 lcmfunsnlem2lem2 16272 ncoprmgcdne1b 16283 isnsgrp 18294 isnmnd 18304 mulmarep1gsum1 21630 fvmptnn04ifb 21908 tdeglem4 25129 isosctrlem2 25874 structiedg0val 27295 umgr2edgneu 27484 imadifxp 30841 f1resrcmplf1dlem 32958 xppss12 40130 n0p 42480 supxrge 42767 uzn0bi 42889 elprn1 43064 elprn2 43065 liminflbuz2 43246 itgcoscmulx 43400 fourierdlem41 43579 elaa2 43665 sge0cl 43809 meadjiunlem 43893 hoidmvlelem2 44024 hspmbllem1 44054 |
Copyright terms: Public domain | W3C validator |