![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version |
Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2951 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon3ad 2959 necon3ai 2971 2reu4lem 4545 pr1eqbg 4881 fpropnf1 7304 nf1const 7340 nelaneq 9668 gcd2n0cl 16555 lcmfunsnlem2lem1 16685 lcmfunsnlem2lem2 16686 ncoprmgcdne1b 16697 isnsgrp 18761 isnmnd 18776 mulmarep1gsum1 22600 fvmptnn04ifb 22878 tdeglem4 26119 isosctrlem2 26880 nnsge1 28364 structiedg0val 29057 umgr2edgneu 29249 imadifxp 32623 f1resrcmplf1dlem 35062 aks6d1c2p2 42076 xppss12 42222 n0p 44945 supxrge 45253 uzn0bi 45374 elprn1 45554 elprn2 45555 liminflbuz2 45736 itgcoscmulx 45890 fourierdlem41 46069 elaa2 46155 sge0cl 46302 meadjiunlem 46386 hoidmvlelem2 46517 hspmbllem1 46547 |
Copyright terms: Public domain | W3C validator |