![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version |
Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2989 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1522 ≠ wne 2984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-ne 2985 |
This theorem is referenced by: necon3ad 2997 2reu4lem 4379 pr1eqbg 4694 fpropnf1 6890 nelaneq 8909 gcd2n0cl 15691 lcmfunsnlem2lem1 15811 lcmfunsnlem2lem2 15812 ncoprmgcdne1b 15823 isnsgrp 17727 isnmnd 17737 mulmarep1gsum1 20866 fvmptnn04ifb 21143 isosctrlem2 25078 structiedg0val 26490 umgr2edgneu 26679 imadifxp 30041 f1resrcmplf1dlem 31973 xppss12 38645 n0p 40844 supxrge 41147 uzn0bi 41277 elprn1 41456 elprn2 41457 liminflbuz2 41638 itgcoscmulx 41795 fourierdlem41 41975 elaa2 42061 sge0cl 42205 meadjiunlem 42289 hoidmvlelem2 42420 hspmbllem1 42450 |
Copyright terms: Public domain | W3C validator |