| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version | ||
| Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2930 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon3ad 2938 necon3ai 2950 2reu4lem 4485 pr1eqbg 4821 fpropnf1 7242 nf1const 7279 nelaneq 9552 gcd2n0cl 16479 lcmfunsnlem2lem1 16608 lcmfunsnlem2lem2 16609 ncoprmgcdne1b 16620 isnsgrp 18650 isnmnd 18665 mulmarep1gsum1 22460 fvmptnn04ifb 22738 tdeglem4 25965 isosctrlem2 26729 nnsge1 28235 structiedg0val 28949 umgr2edgneu 29141 imadifxp 32530 f1resrcmplf1dlem 35076 aks6d1c2p2 42107 xppss12 42217 n0p 45039 supxrge 45334 uzn0bi 45455 elprn1 45631 elprn2 45632 liminflbuz2 45813 itgcoscmulx 45967 fourierdlem41 46146 elaa2 46232 sge0cl 46379 meadjiunlem 46463 hoidmvlelem2 46594 hspmbllem1 46624 |
| Copyright terms: Public domain | W3C validator |