| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version | ||
| Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2938 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: necon3ad 2946 necon3ai 2958 2reu4lem 4502 pr1eqbg 4838 fpropnf1 7265 nf1const 7302 nelaneq 9618 gcd2n0cl 16533 lcmfunsnlem2lem1 16662 lcmfunsnlem2lem2 16663 ncoprmgcdne1b 16674 isnsgrp 18706 isnmnd 18721 mulmarep1gsum1 22516 fvmptnn04ifb 22794 tdeglem4 26022 isosctrlem2 26786 nnsge1 28292 structiedg0val 29006 umgr2edgneu 29198 imadifxp 32587 f1resrcmplf1dlem 35122 aks6d1c2p2 42137 xppss12 42247 n0p 45036 supxrge 45332 uzn0bi 45453 elprn1 45629 elprn2 45630 liminflbuz2 45811 itgcoscmulx 45965 fourierdlem41 46144 elaa2 46230 sge0cl 46377 meadjiunlem 46461 hoidmvlelem2 46592 hspmbllem1 46622 |
| Copyright terms: Public domain | W3C validator |