| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version | ||
| Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2930 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon3ad 2938 necon3ai 2950 2reu4lem 4473 pr1eqbg 4808 fpropnf1 7204 nf1const 7241 nelaneqOLD 9494 gcd2n0cl 16420 lcmfunsnlem2lem1 16549 lcmfunsnlem2lem2 16550 ncoprmgcdne1b 16561 isnsgrp 18597 isnmnd 18612 mulmarep1gsum1 22458 fvmptnn04ifb 22736 tdeglem4 25963 isosctrlem2 26727 nnsge1 28240 structiedg0val 28967 umgr2edgneu 29159 imadifxp 32545 f1resrcmplf1dlem 35053 aks6d1c2p2 42096 xppss12 42206 n0p 45027 supxrge 45322 uzn0bi 45442 elprn1 45618 elprn2 45619 liminflbuz2 45800 itgcoscmulx 45954 fourierdlem41 46133 elaa2 46219 sge0cl 46366 meadjiunlem 46450 hoidmvlelem2 46581 hspmbllem1 46611 |
| Copyright terms: Public domain | W3C validator |