![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version |
Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2943 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2939 |
This theorem is referenced by: necon3ad 2951 necon3ai 2963 2reu4lem 4528 pr1eqbg 4862 fpropnf1 7287 nf1const 7324 nelaneq 9637 gcd2n0cl 16543 lcmfunsnlem2lem1 16672 lcmfunsnlem2lem2 16673 ncoprmgcdne1b 16684 isnsgrp 18749 isnmnd 18764 mulmarep1gsum1 22595 fvmptnn04ifb 22873 tdeglem4 26114 isosctrlem2 26877 nnsge1 28361 structiedg0val 29054 umgr2edgneu 29246 imadifxp 32621 f1resrcmplf1dlem 35079 aks6d1c2p2 42101 xppss12 42247 n0p 44983 supxrge 45288 uzn0bi 45409 elprn1 45589 elprn2 45590 liminflbuz2 45771 itgcoscmulx 45925 fourierdlem41 46104 elaa2 46190 sge0cl 46337 meadjiunlem 46421 hoidmvlelem2 46552 hspmbllem1 46582 |
Copyright terms: Public domain | W3C validator |