| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version | ||
| Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2930 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon3ad 2938 necon3ai 2950 2reu4lem 4481 pr1eqbg 4817 fpropnf1 7224 nf1const 7261 nelaneq 9528 gcd2n0cl 16455 lcmfunsnlem2lem1 16584 lcmfunsnlem2lem2 16585 ncoprmgcdne1b 16596 isnsgrp 18632 isnmnd 18647 mulmarep1gsum1 22493 fvmptnn04ifb 22771 tdeglem4 25998 isosctrlem2 26762 nnsge1 28275 structiedg0val 29002 umgr2edgneu 29194 imadifxp 32580 f1resrcmplf1dlem 35069 aks6d1c2p2 42100 xppss12 42210 n0p 45032 supxrge 45327 uzn0bi 45448 elprn1 45624 elprn2 45625 liminflbuz2 45806 itgcoscmulx 45960 fourierdlem41 46139 elaa2 46225 sge0cl 46372 meadjiunlem 46456 hoidmvlelem2 46587 hspmbllem1 46617 |
| Copyright terms: Public domain | W3C validator |