Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version |
Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
2 | 1 | neneqd 2948 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon3ad 2956 necon3ai 2968 2reu4lem 4456 pr1eqbg 4787 disjprgw 5069 fpropnf1 7140 nf1const 7176 nelaneq 9358 gcd2n0cl 16216 lcmfunsnlem2lem1 16343 lcmfunsnlem2lem2 16344 ncoprmgcdne1b 16355 isnsgrp 18379 isnmnd 18389 mulmarep1gsum1 21722 fvmptnn04ifb 22000 tdeglem4 25224 isosctrlem2 25969 structiedg0val 27392 umgr2edgneu 27581 imadifxp 30940 f1resrcmplf1dlem 33058 xppss12 40204 n0p 42591 supxrge 42877 uzn0bi 42999 elprn1 43174 elprn2 43175 liminflbuz2 43356 itgcoscmulx 43510 fourierdlem41 43689 elaa2 43775 sge0cl 43919 meadjiunlem 44003 hoidmvlelem2 44134 hspmbllem1 44164 |
Copyright terms: Public domain | W3C validator |