| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version | ||
| Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2931 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon3ad 2939 necon3ai 2951 2reu4lem 4488 pr1eqbg 4824 fpropnf1 7245 nf1const 7282 nelaneq 9559 gcd2n0cl 16486 lcmfunsnlem2lem1 16615 lcmfunsnlem2lem2 16616 ncoprmgcdne1b 16627 isnsgrp 18657 isnmnd 18672 mulmarep1gsum1 22467 fvmptnn04ifb 22745 tdeglem4 25972 isosctrlem2 26736 nnsge1 28242 structiedg0val 28956 umgr2edgneu 29148 imadifxp 32537 f1resrcmplf1dlem 35083 aks6d1c2p2 42114 xppss12 42224 n0p 45046 supxrge 45341 uzn0bi 45462 elprn1 45638 elprn2 45639 liminflbuz2 45820 itgcoscmulx 45974 fourierdlem41 46153 elaa2 46239 sge0cl 46386 meadjiunlem 46470 hoidmvlelem2 46601 hspmbllem1 46631 |
| Copyright terms: Public domain | W3C validator |