| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neneq | Structured version Visualization version GIF version | ||
| Description: From inequality to non-equality. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| neneq | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ≠ 𝐵 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2933 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon3ad 2941 necon3ai 2953 2reu4lem 4469 elprn1 4601 elprn2 4602 pr1eqbg 4806 fpropnf1 7201 nf1const 7238 nelaneqOLD 9488 gcd2n0cl 16420 lcmfunsnlem2lem1 16549 lcmfunsnlem2lem2 16550 ncoprmgcdne1b 16561 isnsgrp 18631 isnmnd 18646 mulmarep1gsum1 22488 fvmptnn04ifb 22766 tdeglem4 25992 isosctrlem2 26756 nnsge1 28271 structiedg0val 29000 umgr2edgneu 29192 imadifxp 32581 f1resrcmplf1dlem 35098 aks6d1c2p2 42222 xppss12 42332 n0p 45152 supxrge 45447 uzn0bi 45567 liminflbuz2 45923 itgcoscmulx 46077 fourierdlem41 46256 elaa2 46342 sge0cl 46489 meadjiunlem 46573 hoidmvlelem2 46704 hspmbllem1 46734 chnerlem1 46990 |
| Copyright terms: Public domain | W3C validator |