MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelaneq Structured version   Visualization version   GIF version

Theorem nelaneq 9487
Description: A class is not an element of and equal to a class at the same time. Variant of elneq 9486 analogously to elnotel 9500 and en2lp 9496. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) (Proof shortened by TM, 31-Dec-2025.)
Assertion
Ref Expression
nelaneq ¬ (𝐴𝐵𝐴 = 𝐵)

Proof of Theorem nelaneq
StepHypRef Expression
1 elirr 9485 . . . 4 ¬ 𝐴𝐴
2 eleq2 2820 . . . 4 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
31, 2mtbii 326 . . 3 (𝐴 = 𝐵 → ¬ 𝐴𝐵)
43con2i 139 . 2 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
5 imnan 399 . 2 ((𝐴𝐵 → ¬ 𝐴 = 𝐵) ↔ ¬ (𝐴𝐵𝐴 = 𝐵))
64, 5mpbi 230 1 ¬ (𝐴𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-pr 5370  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806
This theorem is referenced by:  epinid0  9489
  Copyright terms: Public domain W3C validator