| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelaneq | Structured version Visualization version GIF version | ||
| Description: A class is not an element of and equal to a class at the same time. Variant of elneq 9617 analogously to elnotel 9629 and en2lp 9625. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| nelaneq | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elneq 9617 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) | |
| 2 | orc 867 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 3 | neneq 2939 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
| 4 | 3 | olcd 874 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 5 | 2, 4 | ja 186 | . . 3 ⊢ ((𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 6 | 1, 5 | ax-mp 5 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵) |
| 7 | ianor 983 | . 2 ⊢ (¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) ↔ (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 8 | 6, 7 | mpbir 231 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-pr 5407 ax-reg 9611 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: epinid0 9619 |
| Copyright terms: Public domain | W3C validator |