MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelaneq Structured version   Visualization version   GIF version

Theorem nelaneq 9559
Description: A class is not an element of and equal to a class at the same time. Variant of elneq 9558 analogously to elnotel 9570 and en2lp 9566. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
nelaneq ¬ (𝐴𝐵𝐴 = 𝐵)

Proof of Theorem nelaneq
StepHypRef Expression
1 elneq 9558 . . 3 (𝐴𝐵𝐴𝐵)
2 orc 867 . . . 4 𝐴𝐵 → (¬ 𝐴𝐵 ∨ ¬ 𝐴 = 𝐵))
3 neneq 2932 . . . . 5 (𝐴𝐵 → ¬ 𝐴 = 𝐵)
43olcd 874 . . . 4 (𝐴𝐵 → (¬ 𝐴𝐵 ∨ ¬ 𝐴 = 𝐵))
52, 4ja 186 . . 3 ((𝐴𝐵𝐴𝐵) → (¬ 𝐴𝐵 ∨ ¬ 𝐴 = 𝐵))
61, 5ax-mp 5 . 2 𝐴𝐵 ∨ ¬ 𝐴 = 𝐵)
7 ianor 983 . 2 (¬ (𝐴𝐵𝐴 = 𝐵) ↔ (¬ 𝐴𝐵 ∨ ¬ 𝐴 = 𝐵))
86, 7mpbir 231 1 ¬ (𝐴𝐵𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-pr 5390  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  epinid0  9560
  Copyright terms: Public domain W3C validator