![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelaneq | Structured version Visualization version GIF version |
Description: A class is not an element of and equal to a class at the same time. Variant of elneq 8745 analogously to elnotel 8755 and en2lp 8752. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
nelaneq | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elneq 8745 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) | |
2 | orc 894 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
3 | neneq 2977 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
4 | 3 | olcd 901 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
5 | 2, 4 | ja 175 | . . 3 ⊢ ((𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵) |
7 | ianor 1005 | . 2 ⊢ (¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) ↔ (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
8 | 6, 7 | mpbir 223 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-reg 8739 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-v 3387 df-dif 3772 df-un 3774 df-nul 4116 df-sn 4369 df-pr 4371 |
This theorem is referenced by: epinid0 8747 |
Copyright terms: Public domain | W3C validator |