Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelaneq | Structured version Visualization version GIF version |
Description: A class is not an element of and equal to a class at the same time. Variant of elneq 9357 analogously to elnotel 9368 and en2lp 9364. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
nelaneq | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elneq 9357 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) | |
2 | orc 864 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
3 | neneq 2949 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
4 | 3 | olcd 871 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
5 | 2, 4 | ja 186 | . . 3 ⊢ ((𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵) |
7 | ianor 979 | . 2 ⊢ (¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) ↔ (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
8 | 6, 7 | mpbir 230 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-pr 4564 |
This theorem is referenced by: epinid0 9359 |
Copyright terms: Public domain | W3C validator |