Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelaneq | Structured version Visualization version GIF version |
Description: A class is not an element of and equal to a class at the same time. Variant of elneq 9287 analogously to elnotel 9298 and en2lp 9294. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
nelaneq | ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elneq 9287 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) | |
2 | orc 863 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
3 | neneq 2948 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵) | |
4 | 3 | olcd 870 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
5 | 2, 4 | ja 186 | . . 3 ⊢ ((𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) → (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
6 | 1, 5 | ax-mp 5 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵) |
7 | ianor 978 | . 2 ⊢ (¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) ↔ (¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
8 | 6, 7 | mpbir 230 | 1 ⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 |
This theorem is referenced by: epinid0 9289 |
Copyright terms: Public domain | W3C validator |