| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelpr | Structured version Visualization version GIF version | ||
| Description: A set 𝐴 not in a pair is neither element of the pair. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| nelpr | ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg 4615 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 2 | 1 | notbid 318 | . 2 ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 3 | neanior 3019 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 4 | 2, 3 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: inpr0 32468 xnn01gt 32700 |
| Copyright terms: Public domain | W3C validator |