Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelpr Structured version   Visualization version   GIF version

Theorem nelpr 32320
Description: A set 𝐴 not in a pair is neither element of the pair. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
nelpr (𝐴𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴𝐵𝐴𝐶)))

Proof of Theorem nelpr
StepHypRef Expression
1 elprg 4645 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
21notbid 318 . 2 (𝐴𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶)))
3 neanior 3030 . 2 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
42, 3bitr4di 289 1 (𝐴𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴𝐵𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2935  {cpr 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-v 3471  df-un 3949  df-sn 4625  df-pr 4627
This theorem is referenced by:  inpr0  32321  xnn01gt  32534
  Copyright terms: Public domain W3C validator