Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelpr Structured version   Visualization version   GIF version

Theorem nelpr 30780
Description: A set 𝐴 not in a pair is neither element of the pair. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
nelpr (𝐴𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴𝐵𝐴𝐶)))

Proof of Theorem nelpr
StepHypRef Expression
1 elprg 4579 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
21notbid 317 . 2 (𝐴𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶)))
3 neanior 3036 . 2 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
42, 3bitr4di 288 1 (𝐴𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴𝐵𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561
This theorem is referenced by:  inpr0  30781  xnn01gt  30995
  Copyright terms: Public domain W3C validator