Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelpr Structured version   Visualization version   GIF version

Theorem nelpr 32511
Description: A set 𝐴 not in a pair is neither element of the pair. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
nelpr (𝐴𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴𝐵𝐴𝐶)))

Proof of Theorem nelpr
StepHypRef Expression
1 elprg 4596 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
21notbid 318 . 2 (𝐴𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶)))
3 neanior 3021 . 2 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴 = 𝐵𝐴 = 𝐶))
42, 3bitr4di 289 1 (𝐴𝑉 → (¬ 𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴𝐵𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  {cpr 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-un 3902  df-sn 4574  df-pr 4576
This theorem is referenced by:  inpr0  32512  xnn01gt  32753
  Copyright terms: Public domain W3C validator