MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neq0f Structured version   Visualization version   GIF version

Theorem neq0f 4298
Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of neq0 4302 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
eq0f.1 𝑥𝐴
Assertion
Ref Expression
neq0f 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)

Proof of Theorem neq0f
StepHypRef Expression
1 eq0f.1 . . . 4 𝑥𝐴
21eq0f 4297 . . 3 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
32notbii 320 . 2 𝐴 = ∅ ↔ ¬ ∀𝑥 ¬ 𝑥𝐴)
4 df-ex 1781 . 2 (∃𝑥 𝑥𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥𝐴)
53, 4bitr4i 278 1 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1539   = wceq 1541  wex 1780  wcel 2111  wnfc 2879  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-dif 3905  df-nul 4284
This theorem is referenced by:  n0f  4299  ralfal  45204
  Copyright terms: Public domain W3C validator