|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > neq0f | Structured version Visualization version GIF version | ||
| Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of neq0 4351 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by BJ, 15-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| eq0f.1 | ⊢ Ⅎ𝑥𝐴 | 
| Ref | Expression | 
|---|---|
| neq0f | ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eq0f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | eq0f 4346 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | 
| 3 | 2 | notbii 320 | . 2 ⊢ (¬ 𝐴 = ∅ ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | 
| 4 | df-ex 1779 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Ⅎwnfc 2889 ∅c0 4332 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-dif 3953 df-nul 4333 | 
| This theorem is referenced by: n0f 4348 ralfal 45171 | 
| Copyright terms: Public domain | W3C validator |