MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neq0f Structured version   Visualization version   GIF version

Theorem neq0f 4272
Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of neq0 4276 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
eq0f.1 𝑥𝐴
Assertion
Ref Expression
neq0f 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)

Proof of Theorem neq0f
StepHypRef Expression
1 eq0f.1 . . . 4 𝑥𝐴
21eq0f 4271 . . 3 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
32notbii 319 . 2 𝐴 = ∅ ↔ ¬ ∀𝑥 ¬ 𝑥𝐴)
4 df-ex 1784 . 2 (∃𝑥 𝑥𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥𝐴)
53, 4bitr4i 277 1 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wex 1783  wcel 2108  wnfc 2886  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-dif 3886  df-nul 4254
This theorem is referenced by:  n0f  4273  neq0OLD  4279
  Copyright terms: Public domain W3C validator