![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neqcomd | Structured version Visualization version GIF version |
Description: Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
neqcomd.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neqcomd | ⊢ (𝜑 → ¬ 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqcomd.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
2 | eqcom 2744 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
3 | 1, 2 | sylnib 327 | 1 ⊢ (𝜑 → ¬ 𝐵 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2729 |
This theorem is referenced by: phpeqd 9055 phpeqdOLD 9065 simpgnsgd 19770 aks4d1p8d2 40305 rr-phpd 42049 |
Copyright terms: Public domain | W3C validator |