MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neqcomd Structured version   Visualization version   GIF version

Theorem neqcomd 2750
Description: Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypothesis
Ref Expression
neqcomd.1 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
neqcomd (𝜑 → ¬ 𝐵 = 𝐴)

Proof of Theorem neqcomd
StepHypRef Expression
1 neqcomd.1 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
2 eqcom 2747 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
31, 2sylnib 328 1 (𝜑 → ¬ 𝐵 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732
This theorem is referenced by:  phpeqd  9278  phpeqdOLD  9288  simpgnsgd  20144  aks4d1p8d2  42042  selvvvval  42540  rr-phpd  44172
  Copyright terms: Public domain W3C validator