![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rr-phpd | Structured version Visualization version GIF version |
Description: Equivalent of php 9210 without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
rr-phpd.1 | ⊢ (𝜑 → 𝐴 ∈ ω) |
rr-phpd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
rr-phpd.3 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
rr-phpd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rr-phpd.3 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | rr-phpd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ω) | |
3 | rr-phpd.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | 3 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊆ 𝐴) |
5 | simpr 486 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
6 | 5 | neqcomd 2743 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴) |
7 | dfpss2 4086 | . . . . 5 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴)) | |
8 | 4, 6, 7 | sylanbrc 584 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊊ 𝐴) |
9 | php 9210 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | |
10 | 2, 8, 9 | syl2an2r 684 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ≈ 𝐵) |
11 | 10 | ex 414 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵)) |
12 | 1, 11 | mt4d 117 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 ⊊ wpss 3950 class class class wbr 5149 ωcom 7855 ≈ cen 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7856 df-1o 8466 df-en 8940 df-dom 8941 df-fin 8943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |