Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr-phpd Structured version   Visualization version   GIF version

Theorem rr-phpd 42962
Description: Equivalent of php 9210 without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
rr-phpd.1 (𝜑𝐴 ∈ ω)
rr-phpd.2 (𝜑𝐵𝐴)
rr-phpd.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
rr-phpd (𝜑𝐴 = 𝐵)

Proof of Theorem rr-phpd
StepHypRef Expression
1 rr-phpd.3 . 2 (𝜑𝐴𝐵)
2 rr-phpd.1 . . . 4 (𝜑𝐴 ∈ ω)
3 rr-phpd.2 . . . . . 6 (𝜑𝐵𝐴)
43adantr 482 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
5 simpr 486 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵)
65neqcomd 2743 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴)
7 dfpss2 4086 . . . . 5 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
84, 6, 7sylanbrc 584 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
9 php 9210 . . . 4 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
102, 8, 9syl2an2r 684 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵)
1110ex 414 . 2 (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵))
121, 11mt4d 117 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wss 3949  wpss 3950   class class class wbr 5149  ωcom 7855  cen 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-en 8940  df-dom 8941  df-fin 8943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator