Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rr-phpd | Structured version Visualization version GIF version |
Description: Equivalent of php 9054 without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
rr-phpd.1 | ⊢ (𝜑 → 𝐴 ∈ ω) |
rr-phpd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
rr-phpd.3 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
rr-phpd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rr-phpd.3 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | rr-phpd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ω) | |
3 | rr-phpd.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊆ 𝐴) |
5 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
6 | 5 | neqcomd 2747 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴) |
7 | dfpss2 4031 | . . . . 5 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴)) | |
8 | 4, 6, 7 | sylanbrc 583 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊊ 𝐴) |
9 | php 9054 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | |
10 | 2, 8, 9 | syl2an2r 682 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ≈ 𝐵) |
11 | 10 | ex 413 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵)) |
12 | 1, 11 | mt4d 117 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 ⊊ wpss 3898 class class class wbr 5087 ωcom 7759 ≈ cen 8780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-om 7760 df-1o 8346 df-en 8784 df-dom 8785 df-fin 8787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |