| Step | Hyp | Ref
| Expression |
| 1 | | selvvvval.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 2 | | selvvvval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑃) |
| 3 | | eqid 2737 |
. . . . . 6
⊢ ((𝐼 ∖ 𝐽) mPoly 𝑅) = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
| 4 | | eqid 2737 |
. . . . . 6
⊢ (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) = (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) |
| 5 | | eqid 2737 |
. . . . . 6
⊢
(algSc‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) = (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 6 | | eqid 2737 |
. . . . . 6
⊢
((algSc‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) = ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 7 | | selvvvval.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 8 | | selvvvval.j |
. . . . . 6
⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| 9 | | selvvvval.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | selvval2 42594 |
. . . . 5
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = (((𝐼 eval (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ 𝐹))‘(𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧)))))) |
| 11 | | eqid 2737 |
. . . . . 6
⊢ (𝐼 eval (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) = (𝐼 eval (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 12 | | eqid 2737 |
. . . . . 6
⊢ (𝐼 mPoly (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) = (𝐼 mPoly (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 13 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(𝐼 mPoly
(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) = (Base‘(𝐼 mPoly (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 14 | | selvvvval.d |
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 15 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(𝐽 mPoly
((𝐼 ∖ 𝐽) mPoly 𝑅))) = (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 16 | | eqid 2737 |
. . . . . 6
⊢
(mulGrp‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) = (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 17 | | eqid 2737 |
. . . . . 6
⊢
(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) =
(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 18 | | eqid 2737 |
. . . . . 6
⊢
(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) = (.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 19 | 1, 2 | mplrcl 22014 |
. . . . . . 7
⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
| 20 | 9, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ V) |
| 21 | 20, 8 | ssexd 5324 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ V) |
| 22 | 20 | difexd 5331 |
. . . . . . . 8
⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
| 23 | 3, 22, 7 | mplcrngd 42557 |
. . . . . . 7
⊢ (𝜑 → ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ CRing) |
| 24 | 4, 21, 23 | mplcrngd 42557 |
. . . . . 6
⊢ (𝜑 → (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ CRing) |
| 25 | 4 | mplassa 22042 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ V ∧ ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ CRing) → (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ AssAlg) |
| 26 | 21, 23, 25 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ AssAlg) |
| 27 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Scalar‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) = (Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 28 | 5, 27 | asclrhm 21910 |
. . . . . . . . . 10
⊢ ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ AssAlg → (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ ((Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) RingHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 29 | 26, 28 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ ((Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) RingHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 30 | 3 | mplassa 22042 |
. . . . . . . . . . . 12
⊢ (((𝐼 ∖ 𝐽) ∈ V ∧ 𝑅 ∈ CRing) → ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ AssAlg) |
| 31 | 22, 7, 30 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ AssAlg) |
| 32 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(algSc‘((𝐼
∖ 𝐽) mPoly 𝑅)) = (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅)) |
| 33 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Scalar‘((𝐼
∖ 𝐽) mPoly 𝑅)) = (Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅)) |
| 34 | 32, 33 | asclrhm 21910 |
. . . . . . . . . . 11
⊢ (((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ AssAlg → (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ ((Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅)) RingHom ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 35 | 31, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ ((Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅)) RingHom ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 36 | 3, 22, 7 | mplsca 22033 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 = (Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 37 | 36 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ (𝜑 → (Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅)) = 𝑅) |
| 38 | 4, 21, 23 | mplsca 22033 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐼 ∖ 𝐽) mPoly 𝑅) = (Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 39 | 37, 38 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (𝜑 → ((Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅)) RingHom ((𝐼 ∖ 𝐽) mPoly 𝑅)) = (𝑅 RingHom (Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 40 | 35, 39 | eleqtrd 2843 |
. . . . . . . . 9
⊢ (𝜑 → (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ (𝑅 RingHom (Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 41 | | rhmco 20501 |
. . . . . . . . 9
⊢
(((algSc‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ ((Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) RingHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∧ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ (𝑅 RingHom (Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ (𝑅 RingHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 42 | 29, 40, 41 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ (𝑅 RingHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 43 | | rhmghm 20484 |
. . . . . . . 8
⊢
(((algSc‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ (𝑅 RingHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ (𝑅 GrpHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 44 | | ghmmhm 19244 |
. . . . . . . 8
⊢
(((algSc‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ (𝑅 GrpHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ (𝑅 MndHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 45 | 42, 43, 44 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ (𝑅 MndHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 46 | 1, 12, 2, 13, 45, 9 | mhmcompl 22384 |
. . . . . 6
⊢ (𝜑 → (((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ 𝐹) ∈ (Base‘(𝐼 mPoly (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 47 | | fvexd 6921 |
. . . . . . 7
⊢ (𝜑 → (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ V) |
| 48 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅)) = (𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅)) |
| 49 | 23 | crngringd 20243 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ Ring) |
| 50 | 4, 48, 15, 21, 49 | mvrf2 22013 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅)):𝐽⟶(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 51 | 50 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐽) → ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 52 | 51 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑧 ∈ 𝐽) → ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 53 | | eldif 3961 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐼 ∖ 𝐽) ↔ (𝑧 ∈ 𝐼 ∧ ¬ 𝑧 ∈ 𝐽)) |
| 54 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘((𝐼
∖ 𝐽) mPoly 𝑅)) = (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) |
| 55 | 4, 15, 54, 5, 21, 49 | mplasclf 22089 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))):(Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))⟶(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 56 | 55 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∖ 𝐽)) → (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))):(Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))⟶(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 57 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∖ 𝐽) mVar 𝑅) = ((𝐼 ∖ 𝐽) mVar 𝑅) |
| 58 | 7 | crngringd 20243 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 59 | 3, 57, 54, 22, 58 | mvrf2 22013 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐼 ∖ 𝐽) mVar 𝑅):(𝐼 ∖ 𝐽)⟶(Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 60 | 59 | ffvelcdmda 7104 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∖ 𝐽)) → (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 61 | 56, 60 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∖ 𝐽)) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧)) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 62 | 53, 61 | sylan2br 595 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐼 ∧ ¬ 𝑧 ∈ 𝐽)) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧)) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 63 | 62 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ ¬ 𝑧 ∈ 𝐽) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧)) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 64 | 52, 63 | ifclda 4561 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 65 | 64 | fmpttd 7135 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧)))):𝐼⟶(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 66 | 47, 20, 65 | elmapdd 8881 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧)))) ∈ ((Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↑m 𝐼)) |
| 67 | 11, 12, 13, 14, 15, 16, 17, 18, 20, 24, 46, 66 | evlvvval 42583 |
. . . . 5
⊢ (𝜑 → (((𝐼 eval (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ 𝐹))‘(𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))) = ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔)(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘)))))))) |
| 68 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 69 | 1, 68, 2, 14, 9 | mplelf 22018 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑅)) |
| 70 | 69 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝐹:𝐷⟶(Base‘𝑅)) |
| 71 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝑔 ∈ 𝐷) |
| 72 | 70, 71 | fvco3d 7009 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔) = (((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝐹‘𝑔))) |
| 73 | 3, 54, 68, 32, 22, 58 | mplasclf 22089 |
. . . . . . . . . . . 12
⊢ (𝜑 → (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅)):(Base‘𝑅)⟶(Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 74 | 73 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅)):(Base‘𝑅)⟶(Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 75 | 69 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝐹‘𝑔) ∈ (Base‘𝑅)) |
| 76 | 74, 75 | fvco3d 7009 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝐹‘𝑔)) = ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)))) |
| 77 | 72, 76 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔) = ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)))) |
| 78 | 16, 15 | mgpbas 20142 |
. . . . . . . . . . 11
⊢
(Base‘(𝐽 mPoly
((𝐼 ∖ 𝐽) mPoly 𝑅))) = (Base‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 79 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(0g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) =
(0g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 80 | 16, 18 | mgpplusg 20141 |
. . . . . . . . . . 11
⊢
(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) =
(+g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 81 | 16 | crngmgp 20238 |
. . . . . . . . . . . . 13
⊢ ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ CRing → (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ CMnd) |
| 82 | 24, 81 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ CMnd) |
| 83 | 82 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ CMnd) |
| 84 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝐼 ∈ V) |
| 85 | 82 | cmnmndd 19822 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ Mnd) |
| 86 | 85 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐼) → (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ Mnd) |
| 87 | 14 | psrbagf 21938 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ 𝐷 → 𝑔:𝐼⟶ℕ0) |
| 88 | 87 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝑔:𝐼⟶ℕ0) |
| 89 | 88 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐼) → (𝑔‘𝑘) ∈
ℕ0) |
| 90 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧)))) = (𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧)))) |
| 91 | | eleq1w 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑘 → (𝑧 ∈ 𝐽 ↔ 𝑘 ∈ 𝐽)) |
| 92 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑘 → ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧) = ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)) |
| 93 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑘 → (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧) = (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) |
| 94 | 93 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑘 → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧)) = ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) |
| 95 | 91, 92, 94 | ifbieq12d 4554 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑘 → if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))) = if(𝑘 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) |
| 96 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ 𝐼) |
| 97 | 50 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐼) → (𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅)):𝐽⟶(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 98 | 97 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐼) ∧ 𝑘 ∈ 𝐽) → ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 99 | | eldif 3961 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (𝐼 ∖ 𝐽) ↔ (𝑘 ∈ 𝐼 ∧ ¬ 𝑘 ∈ 𝐽)) |
| 100 | 55 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))):(Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))⟶(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 101 | 59 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 102 | 100, 101 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 103 | 99, 102 | sylan2br 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐼 ∧ ¬ 𝑘 ∈ 𝐽)) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 104 | 103 | anassrs 467 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ ¬ 𝑘 ∈ 𝐽) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 105 | 104 | adantllr 719 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐼) ∧ ¬ 𝑘 ∈ 𝐽) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 106 | 98, 105 | ifclda 4561 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐼) → if(𝑘 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 107 | 90, 95, 96, 106 | fvmptd3 7039 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐼) → ((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘) = if(𝑘 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) |
| 108 | 107, 106 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐼) → ((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 109 | 78, 17, 86, 89, 108 | mulgnn0cld 19113 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐼) → ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 110 | 109 | fmpttd 7135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))):𝐼⟶(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 111 | 88 | feqmptd 6977 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝑔 = (𝑘 ∈ 𝐼 ↦ (𝑔‘𝑘))) |
| 112 | 14 | psrbagfsupp 21939 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ 𝐷 → 𝑔 finSupp 0) |
| 113 | 112 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝑔 finSupp 0) |
| 114 | 111, 113 | eqbrtrrd 5167 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ 𝐼 ↦ (𝑔‘𝑘)) finSupp 0) |
| 115 | 78, 79, 17 | mulg0 19092 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) →
(0(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))𝑡) = (0g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 116 | 115 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑡 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) →
(0(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))𝑡) = (0g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 117 | | fvexd 6921 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) →
(0g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) ∈ V) |
| 118 | 114, 116,
89, 108, 117 | fsuppssov1 9424 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) finSupp
(0g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 119 | | disjdifr 4473 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅ |
| 120 | 119 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐼 ∖ 𝐽) ∩ 𝐽) = ∅) |
| 121 | | undifr 4483 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ⊆ 𝐼 ↔ ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
| 122 | 8, 121 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐼 ∖ 𝐽) ∪ 𝐽) = 𝐼) |
| 123 | 122 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 = ((𝐼 ∖ 𝐽) ∪ 𝐽)) |
| 124 | 123 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝐼 = ((𝐼 ∖ 𝐽) ∪ 𝐽)) |
| 125 | 78, 79, 80, 83, 84, 110, 118, 120, 124 | gsumsplit 19946 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘)))) = (((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼 ∖ 𝐽)))(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ 𝐽)))) |
| 126 | | eldifi 4131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (𝐼 ∖ 𝐽) → 𝑘 ∈ 𝐼) |
| 127 | 126 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → 𝑘 ∈ 𝐼) |
| 128 | 126, 106 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → if(𝑘 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 129 | 90, 95, 127, 128 | fvmptd3 7039 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘) = if(𝑘 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) |
| 130 | | eldifn 4132 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (𝐼 ∖ 𝐽) → ¬ 𝑘 ∈ 𝐽) |
| 131 | 130 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ¬ 𝑘 ∈ 𝐽) |
| 132 | 131 | iffalsed 4536 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → if(𝑘 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) = ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) |
| 133 | 129, 132 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘) = ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) |
| 134 | 133 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘)) = ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) |
| 135 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) = (mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 136 | 135, 16 | rhmmhm 20479 |
. . . . . . . . . . . . . . . . . . 19
⊢
((algSc‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ ((Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) RingHom (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) → (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈
((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) MndHom (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 137 | 29, 136 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈
((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) MndHom (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 138 | 137 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈
((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) MndHom (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 139 | 126, 89 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (𝑔‘𝑘) ∈
ℕ0) |
| 140 | 101 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 141 | 38 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) = (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 142 | 141 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) = (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 143 | 140, 142 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 144 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) = (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 145 | 135, 144 | mgpbas 20142 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) =
(Base‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 146 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) =
(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 147 | 145, 146,
17 | mhmmulg 19133 |
. . . . . . . . . . . . . . . . 17
⊢
(((algSc‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈
((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) MndHom (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) ∧ (𝑔‘𝑘) ∈ ℕ0 ∧ (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) = ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) |
| 148 | 138, 139,
143, 147 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) = ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) |
| 149 | 134, 148 | eqtr4d 2780 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘)) = ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) |
| 150 | 149 | mpteq2dva 5242 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))) |
| 151 | | difssd 4137 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝐼 ∖ 𝐽) ⊆ 𝐼) |
| 152 | 151 | resmptd 6058 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼 ∖ 𝐽)) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘)))) |
| 153 | 55 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))):(Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))⟶(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 154 | 38 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) = (mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 155 | 154 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅))) =
(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))) |
| 156 | 155 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) →
(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅))) =
(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))) |
| 157 | 156 | oveqd 7448 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) = ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) |
| 158 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢
(mulGrp‘((𝐼
∖ 𝐽) mPoly 𝑅)) = (mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) |
| 159 | 158, 54 | mgpbas 20142 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘((𝐼
∖ 𝐽) mPoly 𝑅)) =
(Base‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 160 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅))) =
(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 161 | 158 | crngmgp 20238 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ CRing → (mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ CMnd) |
| 162 | 23, 161 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ CMnd) |
| 163 | 162 | cmnmndd 19822 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ Mnd) |
| 164 | 163 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ Mnd) |
| 165 | 159, 160,
164, 139, 140 | mulgnn0cld 19113 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 166 | 157, 165 | eqeltrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 167 | 153, 166 | cofmpt 7152 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))) |
| 168 | 150, 152,
167 | 3eqtr4d 2787 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼 ∖ 𝐽)) = ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))) |
| 169 | 168 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼 ∖ 𝐽))) = ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg
((algSc‘(𝐽 mPoly
((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))))) |
| 170 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) =
(0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 171 | 38, 23 | eqeltrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ CRing) |
| 172 | 135 | crngmgp 20238 |
. . . . . . . . . . . . . . 15
⊢
((Scalar‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ CRing →
(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) ∈ CMnd) |
| 173 | 171, 172 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) ∈ CMnd) |
| 174 | 173 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) ∈ CMnd) |
| 175 | 85 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ Mnd) |
| 176 | 22 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝐼 ∖ 𝐽) ∈ V) |
| 177 | 137 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈
((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) MndHom (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 178 | 166, 142 | eleqtrd 2843 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 179 | 178 | fmpttd 7135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))):(𝐼 ∖ 𝐽)⟶(Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 180 | | 0zd 12625 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 0 ∈ ℤ) |
| 181 | 114, 151,
180 | fmptssfisupp 9434 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (𝑔‘𝑘)) finSupp 0) |
| 182 | 141 | eqimssd 4040 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ⊆ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 183 | 182 | sselda 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) → 𝑢 ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 184 | 183 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑢 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) → 𝑢 ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 185 | 145, 170,
146 | mulg0 19092 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈
(Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) →
(0(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))𝑢) =
(0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))) |
| 186 | 184, 185 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑢 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) →
(0(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))𝑢) =
(0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))) |
| 187 | | fvexd 6921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) →
(0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) ∈ V) |
| 188 | 181, 186,
139, 140, 187 | fsuppssov1 9424 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) finSupp
(0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))) |
| 189 | 145, 170,
174, 175, 176, 177, 179, 188 | gsummhm 19956 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg
((algSc‘(𝐽 mPoly
((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))) = ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))))) |
| 190 | 169, 189 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼 ∖ 𝐽))) = ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))))) |
| 191 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝐽 ⊆ 𝐼) |
| 192 | 191 | resmptd 6058 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ 𝐽) = (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘)))) |
| 193 | 191 | sselda 3983 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → 𝑘 ∈ 𝐼) |
| 194 | 193, 106 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → if(𝑘 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 195 | 90, 95, 193, 194 | fvmptd3 7039 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → ((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘) = if(𝑘 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) |
| 196 | | iftrue 4531 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ 𝐽 → if(𝑘 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) = ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)) |
| 197 | 196 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → if(𝑘 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) = ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)) |
| 198 | 195, 197 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → ((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘) = ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)) |
| 199 | 198 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘)) = ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))) |
| 200 | 199 | mpteq2dva 5242 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) = (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))) |
| 201 | 192, 200 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ 𝐽) = (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))) |
| 202 | 201 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ 𝐽)) = ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))) |
| 203 | 190, 202 | oveq12d 7449 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼 ∖ 𝐽)))(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg ((𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ 𝐽))) = (((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))))(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))) |
| 204 | 26 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ AssAlg) |
| 205 | 145, 170,
174, 176, 179, 188 | gsumcl 19933 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 206 | 21 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝐽 ∈ V) |
| 207 | 85 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → (mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ Mnd) |
| 208 | 193, 89 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → (𝑔‘𝑘) ∈
ℕ0) |
| 209 | 50 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐽) → ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 210 | 209 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 211 | 78, 17, 207, 208, 210 | mulgnn0cld 19113 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 212 | 211 | fmpttd 7135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))):𝐽⟶(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 213 | 114, 191,
180 | fmptssfisupp 9434 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ 𝐽 ↦ (𝑔‘𝑘)) finSupp 0) |
| 214 | 213, 116,
208, 210, 117 | fsuppssov1 9424 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))) finSupp
(0g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 215 | 78, 79, 83, 206, 212, 214 | gsumcl 19933 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 216 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (
·𝑠 ‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) = ( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 217 | 5, 27, 144, 15, 18, 216 | asclmul1 21906 |
. . . . . . . . . . . 12
⊢ (((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ AssAlg ∧
((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) ∧ ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) → (((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))))(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))) = (((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))) |
| 218 | 204, 205,
215, 217 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))))(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))) = (((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))) |
| 219 | 155 | oveqd 7448 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) = ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) |
| 220 | 219 | mpteq2dv 5244 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) |
| 221 | 154, 220 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) = ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))) |
| 222 | 221 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) = ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))) |
| 223 | 222 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))) = (((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))) |
| 224 | 218, 223 | eqtr4d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))))(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))) = (((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))) |
| 225 | 125, 203,
224 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘)))) = (((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))) |
| 226 | 77, 225 | oveq12d 7449 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔)(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))))) = (((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)))(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))) |
| 227 | 74, 75 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 228 | 141 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) = (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 229 | 227, 228 | eleqtrd 2843 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 230 | 4, 21, 49 | mpllmodd 22044 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ LMod) |
| 231 | 230 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ LMod) |
| 232 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅))) =
(0g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 233 | 162 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ CMnd) |
| 234 | 165 | fmpttd 7135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))):(𝐼 ∖ 𝐽)⟶(Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 235 | 159, 232,
160 | mulg0 19092 |
. . . . . . . . . . . . . 14
⊢ (𝑒 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) →
(0(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))𝑒) =
(0g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 236 | 235 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑒 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) →
(0(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))𝑒) =
(0g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 237 | | fvexd 6921 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) →
(0g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ V) |
| 238 | 181, 236,
139, 140, 237 | fsuppssov1 9424 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) finSupp
(0g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 239 | 159, 232,
233, 176, 234, 238 | gsumcl 19933 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 240 | 239, 228 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 241 | 15, 27, 216, 144, 231, 240, 215 | lmodvscld 20877 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 242 | 5, 27, 144, 15, 18, 216 | asclmul1 21906 |
. . . . . . . . 9
⊢ (((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ AssAlg ∧ ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) ∧ (((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) → (((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)))(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))) = (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))) |
| 243 | 204, 229,
241, 242 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)))(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))) = (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))) |
| 244 | 226, 243 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔)(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))))) = (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))) |
| 245 | 244 | mpteq2dva 5242 |
. . . . . 6
⊢ (𝜑 → (𝑔 ∈ 𝐷 ↦ (((((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔)(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘)))))) = (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))) |
| 246 | 245 | oveq2d 7447 |
. . . . 5
⊢ (𝜑 → ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔)(.r‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐼 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝑧 ∈ 𝐼 ↦ if(𝑧 ∈ 𝐽, ((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑧))))‘𝑘))))))) = ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))) |
| 247 | 10, 67, 246 | 3eqtrd 2781 |
. . . 4
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))) |
| 248 | 247 | fveq1d 6908 |
. . 3
⊢ (𝜑 → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑌 ↾ 𝐽)) = (((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌 ↾ 𝐽))) |
| 249 | 248 | fveq1d 6908 |
. 2
⊢ (𝜑 → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑌 ↾ 𝐽))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = ((((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌 ↾ 𝐽))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 250 | | eqid 2737 |
. . . 4
⊢
(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)) = (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)) |
| 251 | 49 | ringcmnd 20281 |
. . . 4
⊢ (𝜑 → ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ CMnd) |
| 252 | 7 | crnggrpd 20244 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 253 | 252 | grpmndd 18964 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 254 | | ovex 7464 |
. . . . . 6
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 255 | 14, 254 | rabex2 5341 |
. . . . 5
⊢ 𝐷 ∈ V |
| 256 | 255 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
| 257 | | eqid 2737 |
. . . . . 6
⊢ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} = {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈
Fin} |
| 258 | | eqid 2737 |
. . . . . 6
⊢ (𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) = (𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 259 | | difssd 4137 |
. . . . . . 7
⊢ (𝜑 → (𝐼 ∖ 𝐽) ⊆ 𝐼) |
| 260 | | selvvvval.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| 261 | 14, 257, 20, 259, 260 | psrbagres 42556 |
. . . . . 6
⊢ (𝜑 → (𝑌 ↾ (𝐼 ∖ 𝐽)) ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈
Fin}) |
| 262 | 3, 54, 257, 258, 22, 252, 261 | mplmapghm 42566 |
. . . . 5
⊢ (𝜑 → (𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) ∈ (((𝐼 ∖ 𝐽) mPoly 𝑅) GrpHom 𝑅)) |
| 263 | | ghmmhm 19244 |
. . . . 5
⊢ ((𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) ∈ (((𝐼 ∖ 𝐽) mPoly 𝑅) GrpHom 𝑅) → (𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) ∈ (((𝐼 ∖ 𝐽) mPoly 𝑅) MndHom 𝑅)) |
| 264 | 262, 263 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) ∈ (((𝐼 ∖ 𝐽) mPoly 𝑅) MndHom 𝑅)) |
| 265 | | eqid 2737 |
. . . . . . . 8
⊢ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈
Fin} |
| 266 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) → 𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 267 | 4, 54, 15, 265, 266 | mplelf 22018 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) → 𝑤:{𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈
Fin}⟶(Base‘((𝐼
∖ 𝐽) mPoly 𝑅))) |
| 268 | 14, 265, 20, 8, 260 | psrbagres 42556 |
. . . . . . . 8
⊢ (𝜑 → (𝑌 ↾ 𝐽) ∈ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈
Fin}) |
| 269 | 268 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) → (𝑌 ↾ 𝐽) ∈ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈
Fin}) |
| 270 | 267, 269 | ffvelcdmd 7105 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) → (𝑤‘(𝑌 ↾ 𝐽)) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 271 | 270 | fmpttd 7135 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))):(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))⟶(Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 272 | 15, 27, 216, 144, 231, 229, 241 | lmodvscld 20877 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 273 | 272 | fmpttd 7135 |
. . . . 5
⊢ (𝜑 → (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))):𝐷⟶(Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 274 | 271, 273 | fcod 6761 |
. . . 4
⊢ (𝜑 → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))):𝐷⟶(Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 275 | | fvexd 6921 |
. . . . 5
⊢ (𝜑 →
(0g‘((𝐼
∖ 𝐽) mPoly 𝑅)) ∈ V) |
| 276 | 24 | crngringd 20243 |
. . . . . 6
⊢ (𝜑 → (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ Ring) |
| 277 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) = (0g‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 278 | 15, 277 | ring0cl 20264 |
. . . . . 6
⊢ ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ Ring →
(0g‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 279 | 276, 278 | syl 17 |
. . . . 5
⊢ (𝜑 →
(0g‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 280 | | ssidd 4007 |
. . . . 5
⊢ (𝜑 → (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ⊆ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 281 | 255 | mptex 7243 |
. . . . . . . 8
⊢ (𝑔 ∈ 𝐷 ↦ ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))) ∈ V |
| 282 | 281 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑔 ∈ 𝐷 ↦ ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))) ∈ V) |
| 283 | | fvexd 6921 |
. . . . . . 7
⊢ (𝜑 →
(0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) ∈ V) |
| 284 | | funmpt 6604 |
. . . . . . . 8
⊢ Fun
(𝑔 ∈ 𝐷 ↦ ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))) |
| 285 | 284 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → Fun (𝑔 ∈ 𝐷 ↦ ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)))) |
| 286 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 287 | 1, 2, 286, 9 | mplelsfi 22015 |
. . . . . . 7
⊢ (𝜑 → 𝐹 finSupp (0g‘𝑅)) |
| 288 | | ssidd 4007 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) |
| 289 | | fvexd 6921 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
| 290 | 69, 288, 9, 289 | suppssrg 8221 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑅)))) → (𝐹‘𝑔) = (0g‘𝑅)) |
| 291 | 290 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑅)))) → ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)) = ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(0g‘𝑅))) |
| 292 | 3, 32, 286, 250, 22, 58 | mplascl0 42564 |
. . . . . . . . . . 11
⊢ (𝜑 → ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(0g‘𝑅)) =
(0g‘((𝐼
∖ 𝐽) mPoly 𝑅))) |
| 293 | 38 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝜑 →
(0g‘((𝐼
∖ 𝐽) mPoly 𝑅)) =
(0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 294 | 292, 293 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (𝜑 → ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(0g‘𝑅)) =
(0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 295 | 294 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑅)))) → ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(0g‘𝑅)) =
(0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 296 | 291, 295 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 ∖ (𝐹 supp (0g‘𝑅)))) → ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔)) =
(0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 297 | 296, 256 | suppss2 8225 |
. . . . . . 7
⊢ (𝜑 → ((𝑔 ∈ 𝐷 ↦ ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))) supp
(0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) ⊆ (𝐹 supp (0g‘𝑅))) |
| 298 | 282, 283,
285, 287, 297 | fsuppsssuppgd 9422 |
. . . . . 6
⊢ (𝜑 → (𝑔 ∈ 𝐷 ↦ ((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))) finSupp
(0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))) |
| 299 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) =
(0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 300 | 15, 27, 216, 299, 277 | lmod0vs 20893 |
. . . . . . 7
⊢ (((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ LMod ∧ 𝑓 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) →
((0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))𝑓) = (0g‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 301 | 230, 300 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) →
((0g‘(Scalar‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))𝑓) = (0g‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 302 | | fvexd 6921 |
. . . . . 6
⊢ (𝜑 →
(0g‘(𝐽
mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ V) |
| 303 | 298, 301,
227, 241, 302 | fsuppssov1 9424 |
. . . . 5
⊢ (𝜑 → (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))) finSupp (0g‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 304 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) = (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) |
| 305 | 23 | crnggrpd 20244 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ Grp) |
| 306 | 4, 15, 265, 304, 21, 305, 268 | mplmapghm 42566 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∈ ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) GrpHom ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 307 | | ghmmhm 19244 |
. . . . . . 7
⊢ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∈ ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) GrpHom ((𝐼 ∖ 𝐽) mPoly 𝑅)) → (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∈ ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) MndHom ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 308 | 306, 307 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∈ ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) MndHom ((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 309 | 277, 250 | mhm0 18807 |
. . . . . 6
⊢ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∈ ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) MndHom ((𝐼 ∖ 𝐽) mPoly 𝑅)) → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽)))‘(0g‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) = (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 310 | 308, 309 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽)))‘(0g‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) = (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 311 | 275, 279,
273, 271, 280, 256, 47, 303, 310 | fsuppcor 9444 |
. . . 4
⊢ (𝜑 → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))) finSupp (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 312 | 54, 250, 251, 253, 256, 264, 274, 311 | gsummhm 19956 |
. . 3
⊢ (𝜑 → (𝑅 Σg ((𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))))) = ((𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽))))‘(((𝐼 ∖ 𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))))) |
| 313 | | fveq1 6905 |
. . . 4
⊢ (𝑣 = (((𝐼 ∖ 𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))) → (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = ((((𝐼 ∖ 𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 314 | 54, 250, 251, 256, 274, 311 | gsumcl 19933 |
. . . 4
⊢ (𝜑 → (((𝐼 ∖ 𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 315 | | fvexd 6921 |
. . . 4
⊢ (𝜑 → ((((𝐼 ∖ 𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) ∈ V) |
| 316 | 258, 313,
314, 315 | fvmptd3 7039 |
. . 3
⊢ (𝜑 → ((𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽))))‘(((𝐼 ∖ 𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))))) = ((((𝐼 ∖ 𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 317 | 276 | ringcmnd 20281 |
. . . . . 6
⊢ (𝜑 → (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ CMnd) |
| 318 | 305 | grpmndd 18964 |
. . . . . 6
⊢ (𝜑 → ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ Mnd) |
| 319 | 15, 277, 317, 318, 256, 308, 273, 303 | gsummhm 19956 |
. . . . 5
⊢ (𝜑 → (((𝐼 ∖ 𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))) = ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽)))‘((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))))) |
| 320 | | fveq1 6905 |
. . . . . 6
⊢ (𝑤 = ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))) → (𝑤‘(𝑌 ↾ 𝐽)) = (((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌 ↾ 𝐽))) |
| 321 | 15, 277, 317, 256, 273, 303 | gsumcl 19933 |
. . . . . 6
⊢ (𝜑 → ((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))) ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 322 | | fvexd 6921 |
. . . . . 6
⊢ (𝜑 → (((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌 ↾ 𝐽)) ∈ V) |
| 323 | 304, 320,
321, 322 | fvmptd3 7039 |
. . . . 5
⊢ (𝜑 → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽)))‘((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))) = (((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌 ↾ 𝐽))) |
| 324 | 319, 323 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → (((𝐼 ∖ 𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))) = (((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌 ↾ 𝐽))) |
| 325 | 324 | fveq1d 6908 |
. . 3
⊢ (𝜑 → ((((𝐼 ∖ 𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = ((((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌 ↾ 𝐽))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 326 | 312, 316,
325 | 3eqtrrd 2782 |
. 2
⊢ (𝜑 → ((((𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌 ↾ 𝐽))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = (𝑅 Σg ((𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))))) |
| 327 | 4, 54, 15, 265, 272 | mplelf 22018 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))):{𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈
Fin}⟶(Base‘((𝐼
∖ 𝐽) mPoly 𝑅))) |
| 328 | 268 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑌 ↾ 𝐽) ∈ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈
Fin}) |
| 329 | 327, 328 | ffvelcdmd 7105 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽)) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 330 | | eqidd 2738 |
. . . . . . 7
⊢ (𝜑 → (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))) = (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))) |
| 331 | | eqidd 2738 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) = (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽)))) |
| 332 | | fveq1 6905 |
. . . . . . 7
⊢ (𝑤 = (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))) → (𝑤‘(𝑌 ↾ 𝐽)) = ((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽))) |
| 333 | 272, 330,
331, 332 | fmptco 7149 |
. . . . . 6
⊢ (𝜑 → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))) = (𝑔 ∈ 𝐷 ↦ ((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽)))) |
| 334 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) = (𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽))))) |
| 335 | | fveq1 6905 |
. . . . . 6
⊢ (𝑣 = ((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽)) → (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = (((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 336 | 329, 333,
334, 335 | fmptco 7149 |
. . . . 5
⊢ (𝜑 → ((𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))) = (𝑔 ∈ 𝐷 ↦ (((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽))‘(𝑌 ↾ (𝐼 ∖ 𝐽))))) |
| 337 | | eqid 2737 |
. . . . . . . . . 10
⊢
(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅)) = (.r‘((𝐼 ∖ 𝐽) mPoly 𝑅)) |
| 338 | 4, 216, 54, 15, 337, 265, 227, 241, 328 | mplvscaval 22036 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽)) = (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))((((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))‘(𝑌 ↾ 𝐽)))) |
| 339 | 4, 216, 54, 15, 337, 265, 239, 215, 328 | mplvscaval 22036 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))‘(𝑌 ↾ 𝐽)) = (((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽)))) |
| 340 | 339 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))((((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))‘(𝑌 ↾ 𝐽))) = (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽))))) |
| 341 | 31 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ AssAlg) |
| 342 | 36 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 343 | 342 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (Base‘𝑅) = (Base‘(Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 344 | 75, 343 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝐹‘𝑔) ∈ (Base‘(Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 345 | 49 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ Ring) |
| 346 | 4, 54, 15, 265, 215 | mplelf 22018 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))):{𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈
Fin}⟶(Base‘((𝐼
∖ 𝐽) mPoly 𝑅))) |
| 347 | 346, 328 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽)) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 348 | 54, 337, 345, 239, 347 | ringcld 20257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽))) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 349 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘(Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅))) = (Base‘(Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 350 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (
·𝑠 ‘((𝐼 ∖ 𝐽) mPoly 𝑅)) = ( ·𝑠
‘((𝐼 ∖ 𝐽) mPoly 𝑅)) |
| 351 | 32, 33, 349, 54, 337, 350 | asclmul1 21906 |
. . . . . . . . . 10
⊢ ((((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ AssAlg ∧ (𝐹‘𝑔) ∈ (Base‘(Scalar‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∧ (((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽))) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) → (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽)))) = ((𝐹‘𝑔)( ·𝑠
‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽))))) |
| 352 | 341, 344,
348, 351 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽)))) = ((𝐹‘𝑔)( ·𝑠
‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽))))) |
| 353 | 338, 340,
352 | 3eqtrd 2781 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽)) = ((𝐹‘𝑔)( ·𝑠
‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽))))) |
| 354 | 353 | fveq1d 6908 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = (((𝐹‘𝑔)( ·𝑠
‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽))))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 355 | | eqid 2737 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 356 | 261 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑌 ↾ (𝐼 ∖ 𝐽)) ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈
Fin}) |
| 357 | 3, 350, 68, 54, 355, 257, 75, 348, 356 | mplvscaval 22036 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((𝐹‘𝑔)( ·𝑠
‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽))))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = ((𝐹‘𝑔)(.r‘𝑅)((((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽)))‘(𝑌 ↾ (𝐼 ∖ 𝐽))))) |
| 358 | | ovif2 7532 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) = if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(1r‘((𝐼 ∖ 𝐽) mPoly 𝑅))), ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 359 | 358 | fveq1i 6907 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = (if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(1r‘((𝐼 ∖ 𝐽) mPoly 𝑅))), ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) |
| 360 | | iffv 6923 |
. . . . . . . . . . . 12
⊢
(if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(1r‘((𝐼 ∖ 𝐽) mPoly 𝑅))), ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼 ∖ 𝐽))), (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 361 | 359, 360 | eqtri 2765 |
. . . . . . . . . . 11
⊢ (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼 ∖ 𝐽))), (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 362 | | eqeq1 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝑌 ↾ (𝐼 ∖ 𝐽)) → (𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)) ↔ (𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽)))) |
| 363 | 362 | ifbid 4549 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑌 ↾ (𝐼 ∖ 𝐽)) → if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)) = if((𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅))) |
| 364 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)) = (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)) |
| 365 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 366 | 58 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 367 | 14, 257, 84, 151, 71 | psrbagres 42556 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑔 ↾ (𝐼 ∖ 𝐽)) ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈
Fin}) |
| 368 | 3, 54, 286, 365, 257, 176, 366, 367 | mplmon 22053 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅))) ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 369 | 54, 337, 364, 345, 368 | ringridmd 20270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(1r‘((𝐼 ∖ 𝐽) mPoly 𝑅))) = (𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))) |
| 370 | | fvexd 6921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (1r‘𝑅) ∈ V) |
| 371 | | fvexd 6921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (0g‘𝑅) ∈ V) |
| 372 | 370, 371 | ifcld 4572 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → if((𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)) ∈ V) |
| 373 | 363, 369,
356, 372 | fvmptd4 7040 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = if((𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅))) |
| 374 | 54, 337, 250, 345, 368 | ringrzd 20293 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))) = (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))) |
| 375 | 3, 257, 286, 250, 22, 252 | mpl0 22026 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(0g‘((𝐼
∖ 𝐽) mPoly 𝑅)) = ({𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})) |
| 376 | 375 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)) = ({𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})) |
| 377 | 374, 376 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))) = ({𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})) |
| 378 | 377 | fveq1d 6908 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = (({𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 379 | | fvex 6919 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑅) ∈ V |
| 380 | 379 | fvconst2 7224 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 ↾ (𝐼 ∖ 𝐽)) ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} → (({𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = (0g‘𝑅)) |
| 381 | 356, 380 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (({𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ×
{(0g‘𝑅)})‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = (0g‘𝑅)) |
| 382 | 378, 381 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = (0g‘𝑅)) |
| 383 | 373, 382 | ifeq12d 4547 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼 ∖ 𝐽))), (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) = if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), if((𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) |
| 384 | 361, 383 | eqtrid 2789 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), if((𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) |
| 385 | 384 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐹‘𝑔)(.r‘𝑅)(((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) = ((𝐹‘𝑔)(.r‘𝑅)if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), if((𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)))) |
| 386 | | ifan 4579 |
. . . . . . . . . . 11
⊢
if(((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽) ∧ (𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽))), (1r‘𝑅), (0g‘𝑅)) = if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), if((𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅)) |
| 387 | 386 | oveq2i 7442 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑔)(.r‘𝑅)if(((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽) ∧ (𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽))), (1r‘𝑅), (0g‘𝑅))) = ((𝐹‘𝑔)(.r‘𝑅)if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), if((𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) |
| 388 | 14 | psrbagf 21938 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑌 ∈ 𝐷 → 𝑌:𝐼⟶ℕ0) |
| 389 | 260, 388 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑌:𝐼⟶ℕ0) |
| 390 | 389 | ffnd 6737 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑌 Fn 𝐼) |
| 391 | 390 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝑌 Fn 𝐼) |
| 392 | | undif 4482 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 ⊆ 𝐼 ↔ (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) |
| 393 | 8, 392 | sylib 218 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) |
| 394 | 393 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝐽 ∪ (𝐼 ∖ 𝐽)) = 𝐼) |
| 395 | 394 | fneq2d 6662 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑌 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ↔ 𝑌 Fn 𝐼)) |
| 396 | 391, 395 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝑌 Fn (𝐽 ∪ (𝐼 ∖ 𝐽))) |
| 397 | 88 | ffnd 6737 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝑔 Fn 𝐼) |
| 398 | 394 | fneq2d 6662 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑔 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ↔ 𝑔 Fn 𝐼)) |
| 399 | 397, 398 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝑔 Fn (𝐽 ∪ (𝐼 ∖ 𝐽))) |
| 400 | | eqfnun 7057 |
. . . . . . . . . . . . . 14
⊢ ((𝑌 Fn (𝐽 ∪ (𝐼 ∖ 𝐽)) ∧ 𝑔 Fn (𝐽 ∪ (𝐼 ∖ 𝐽))) → (𝑌 = 𝑔 ↔ ((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽) ∧ (𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽))))) |
| 401 | 396, 399,
400 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑌 = 𝑔 ↔ ((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽) ∧ (𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽))))) |
| 402 | 401 | ifbid 4549 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → if(𝑌 = 𝑔, (1r‘𝑅), (0g‘𝑅)) = if(((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽) ∧ (𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽))), (1r‘𝑅), (0g‘𝑅))) |
| 403 | 402 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐹‘𝑔)(.r‘𝑅)if(𝑌 = 𝑔, (1r‘𝑅), (0g‘𝑅))) = ((𝐹‘𝑔)(.r‘𝑅)if(((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽) ∧ (𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽))), (1r‘𝑅), (0g‘𝑅)))) |
| 404 | | ovif2 7532 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑔)(.r‘𝑅)if(𝑌 = 𝑔, (1r‘𝑅), (0g‘𝑅))) = if(𝑌 = 𝑔, ((𝐹‘𝑔)(.r‘𝑅)(1r‘𝑅)), ((𝐹‘𝑔)(.r‘𝑅)(0g‘𝑅))) |
| 405 | 403, 404 | eqtr3di 2792 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐹‘𝑔)(.r‘𝑅)if(((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽) ∧ (𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽))), (1r‘𝑅), (0g‘𝑅))) = if(𝑌 = 𝑔, ((𝐹‘𝑔)(.r‘𝑅)(1r‘𝑅)), ((𝐹‘𝑔)(.r‘𝑅)(0g‘𝑅)))) |
| 406 | 387, 405 | eqtr3id 2791 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐹‘𝑔)(.r‘𝑅)if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), if((𝑌 ↾ (𝐼 ∖ 𝐽)) = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)), (0g‘𝑅))) = if(𝑌 = 𝑔, ((𝐹‘𝑔)(.r‘𝑅)(1r‘𝑅)), ((𝐹‘𝑔)(.r‘𝑅)(0g‘𝑅)))) |
| 407 | 385, 406 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐹‘𝑔)(.r‘𝑅)(((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) = if(𝑌 = 𝑔, ((𝐹‘𝑔)(.r‘𝑅)(1r‘𝑅)), ((𝐹‘𝑔)(.r‘𝑅)(0g‘𝑅)))) |
| 408 | 7 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → 𝑅 ∈ CRing) |
| 409 | 3, 257, 286, 365, 176, 158, 160, 57, 408, 367 | mplcoe2 22059 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅))) = ((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑔 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))) |
| 410 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → 𝑘 ∈ (𝐼 ∖ 𝐽)) |
| 411 | 410 | fvresd 6926 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → ((𝑔 ↾ (𝐼 ∖ 𝐽))‘𝑘) = (𝑔‘𝑘)) |
| 412 | 411 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ (𝐼 ∖ 𝐽)) → (((𝑔 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)) = ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) |
| 413 | 412 | mpteq2dva 5242 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑔 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))) = (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) |
| 414 | 413 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ (((𝑔 ↾ (𝐼 ∖ 𝐽))‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘)))) = ((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))) |
| 415 | 409, 414 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅))) = ((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))) |
| 416 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
if(𝑗 = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) = (𝑗 ∈ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
if(𝑗 = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 417 | | eqeq1 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑌 ↾ 𝐽) → (𝑗 = (𝑔 ↾ 𝐽) ↔ (𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽))) |
| 418 | 417 | ifbid 4549 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑌 ↾ 𝐽) → if(𝑗 = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))) = if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 419 | | fvexd 6921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ V) |
| 420 | | fvexd 6921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ∈ V) |
| 421 | 419, 420 | ifcld 4572 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))) ∈ V) |
| 422 | 416, 418,
328, 421 | fvmptd3 7039 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝑗 ∈ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
if(𝑗 = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ 𝐽)) = if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) |
| 423 | 23 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐼 ∖ 𝐽) mPoly 𝑅) ∈ CRing) |
| 424 | 14, 265, 84, 191, 71 | psrbagres 42556 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑔 ↾ 𝐽) ∈ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈
Fin}) |
| 425 | 4, 265, 250, 364, 206, 16, 17, 48, 423, 424 | mplcoe2 22059 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑗 ∈ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
if(𝑗 = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) = ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ (((𝑔 ↾ 𝐽)‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))) |
| 426 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → 𝑘 ∈ 𝐽) |
| 427 | 426 | fvresd 6926 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → ((𝑔 ↾ 𝐽)‘𝑘) = (𝑔‘𝑘)) |
| 428 | 427 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐷) ∧ 𝑘 ∈ 𝐽) → (((𝑔 ↾ 𝐽)‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)) = ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))) |
| 429 | 428 | mpteq2dva 5242 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑘 ∈ 𝐽 ↦ (((𝑔 ↾ 𝐽)‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))) = (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))) |
| 430 | 429 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ (((𝑔 ↾ 𝐽)‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))) = ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))) |
| 431 | 425, 430 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (𝑗 ∈ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
if(𝑗 = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) = ((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))) |
| 432 | 431 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝑗 ∈ {𝑥 ∈ (ℕ0
↑m 𝐽)
∣ (◡𝑥 “ ℕ) ∈ Fin} ↦
if(𝑗 = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ 𝐽)) = (((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽))) |
| 433 | 422, 432 | eqtr3d 2779 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))) = (((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽))) |
| 434 | 415, 433 | oveq12d 7449 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅)))) = (((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽)))) |
| 435 | 434 | fveq1d 6908 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = ((((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽)))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) |
| 436 | 435 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐹‘𝑔)(.r‘𝑅)(((𝑖 ∈ {𝑦 ∈ (ℕ0
↑m (𝐼
∖ 𝐽)) ∣ (◡𝑦 “ ℕ) ∈ Fin} ↦
if(𝑖 = (𝑔 ↾ (𝐼 ∖ 𝐽)), (1r‘𝑅), (0g‘𝑅)))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))if((𝑌 ↾ 𝐽) = (𝑔 ↾ 𝐽), (1r‘((𝐼 ∖ 𝐽) mPoly 𝑅)), (0g‘((𝐼 ∖ 𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) = ((𝐹‘𝑔)(.r‘𝑅)((((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽)))‘(𝑌 ↾ (𝐼 ∖ 𝐽))))) |
| 437 | 68, 355, 365, 366, 75 | ringridmd 20270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐹‘𝑔)(.r‘𝑅)(1r‘𝑅)) = (𝐹‘𝑔)) |
| 438 | 68, 355, 286, 366, 75 | ringrzd 20293 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐹‘𝑔)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 439 | 437, 438 | ifeq12d 4547 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → if(𝑌 = 𝑔, ((𝐹‘𝑔)(.r‘𝑅)(1r‘𝑅)), ((𝐹‘𝑔)(.r‘𝑅)(0g‘𝑅))) = if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) |
| 440 | 407, 436,
439 | 3eqtr3d 2785 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → ((𝐹‘𝑔)(.r‘𝑅)((((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼 ∖ 𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌 ↾ 𝐽)))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) = if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) |
| 441 | 354, 357,
440 | 3eqtrd 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) |
| 442 | 441 | mpteq2dva 5242 |
. . . . 5
⊢ (𝜑 → (𝑔 ∈ 𝐷 ↦ (((((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌 ↾ 𝐽))‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) = (𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)))) |
| 443 | 336, 442 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → ((𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘))))))))) = (𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)))) |
| 444 | 443 | oveq2d 7447 |
. . 3
⊢ (𝜑 → (𝑅 Σg ((𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))))) = (𝑅 Σg (𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))))) |
| 445 | 58 | ringcmnd 20281 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 446 | 68, 286 | ring0cl 20264 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ (Base‘𝑅)) |
| 447 | 58, 446 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 448 | 447 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 449 | 75, 448 | ifcld 4572 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐷) → if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 450 | 449 | fmpttd 7135 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))):𝐷⟶(Base‘𝑅)) |
| 451 | | eldifsnneq 4791 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑔 = 𝑌) |
| 452 | 451 | neqcomd 2747 |
. . . . . . 7
⊢ (𝑔 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑌 = 𝑔) |
| 453 | 452 | iffalsed 4536 |
. . . . . 6
⊢ (𝑔 ∈ (𝐷 ∖ {𝑌}) → if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)) = (0g‘𝑅)) |
| 454 | 453 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐷 ∖ {𝑌})) → if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)) = (0g‘𝑅)) |
| 455 | 454, 256 | suppss2 8225 |
. . . 4
⊢ (𝜑 → ((𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑌}) |
| 456 | 256 | mptexd 7244 |
. . . . 5
⊢ (𝜑 → (𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) ∈ V) |
| 457 | | funmpt 6604 |
. . . . . 6
⊢ Fun
(𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) |
| 458 | 457 | a1i 11 |
. . . . 5
⊢ (𝜑 → Fun (𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)))) |
| 459 | | snfi 9083 |
. . . . . . 7
⊢ {𝑌} ∈ Fin |
| 460 | 459 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑌} ∈ Fin) |
| 461 | 460, 455 | ssfid 9301 |
. . . . 5
⊢ (𝜑 → ((𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) supp (0g‘𝑅)) ∈ Fin) |
| 462 | 456, 447,
458, 461 | isfsuppd 9406 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) finSupp (0g‘𝑅)) |
| 463 | 68, 286, 445, 256, 450, 455, 462 | gsumres 19931 |
. . 3
⊢ (𝜑 → (𝑅 Σg ((𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) ↾ {𝑌})) = (𝑅 Σg (𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))))) |
| 464 | 260 | snssd 4809 |
. . . . . 6
⊢ (𝜑 → {𝑌} ⊆ 𝐷) |
| 465 | 464 | resmptd 6058 |
. . . . 5
⊢ (𝜑 → ((𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) ↾ {𝑌}) = (𝑔 ∈ {𝑌} ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)))) |
| 466 | 465 | oveq2d 7447 |
. . . 4
⊢ (𝜑 → (𝑅 Σg ((𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) ↾ {𝑌})) = (𝑅 Σg (𝑔 ∈ {𝑌} ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))))) |
| 467 | 69, 260 | ffvelcdmd 7105 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝑅)) |
| 468 | | iftrue 4531 |
. . . . . . . 8
⊢ (𝑌 = 𝑔 → if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)) = (𝐹‘𝑔)) |
| 469 | 468 | eqcoms 2745 |
. . . . . . 7
⊢ (𝑔 = 𝑌 → if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)) = (𝐹‘𝑔)) |
| 470 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑔 = 𝑌 → (𝐹‘𝑔) = (𝐹‘𝑌)) |
| 471 | 469, 470 | eqtrd 2777 |
. . . . . 6
⊢ (𝑔 = 𝑌 → if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)) = (𝐹‘𝑌)) |
| 472 | 68, 471 | gsumsn 19972 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑌 ∈ 𝐷 ∧ (𝐹‘𝑌) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑔 ∈ {𝑌} ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)))) = (𝐹‘𝑌)) |
| 473 | 253, 260,
467, 472 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑔 ∈ {𝑌} ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅)))) = (𝐹‘𝑌)) |
| 474 | 466, 473 | eqtrd 2777 |
. . 3
⊢ (𝜑 → (𝑅 Σg ((𝑔 ∈ 𝐷 ↦ if(𝑌 = 𝑔, (𝐹‘𝑔), (0g‘𝑅))) ↾ {𝑌})) = (𝐹‘𝑌)) |
| 475 | 444, 463,
474 | 3eqtr2d 2783 |
. 2
⊢ (𝜑 → (𝑅 Σg ((𝑣 ∈ (Base‘((𝐼 ∖ 𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼 ∖ 𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌 ↾ 𝐽))) ∘ (𝑔 ∈ 𝐷 ↦ (((algSc‘((𝐼 ∖ 𝐽) mPoly 𝑅))‘(𝐹‘𝑔))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼 ∖ 𝐽) ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘((𝐼 ∖ 𝐽) mPoly 𝑅)))(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑘))))( ·𝑠
‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))) Σg (𝑘 ∈ 𝐽 ↦ ((𝑔‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼 ∖ 𝐽) mPoly 𝑅))‘𝑘)))))))))) = (𝐹‘𝑌)) |
| 476 | 249, 326,
475 | 3eqtrd 2781 |
1
⊢ (𝜑 → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑌 ↾ 𝐽))‘(𝑌 ↾ (𝐼 ∖ 𝐽))) = (𝐹‘𝑌)) |