Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  selvvvval Structured version   Visualization version   GIF version

Theorem selvvvval 42580
Description: Recover the original polynomial from a selectVars application. (Contributed by SN, 15-Mar-2025.)
Hypotheses
Ref Expression
selvvvval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
selvvvval.p 𝑃 = (𝐼 mPoly 𝑅)
selvvvval.b 𝐵 = (Base‘𝑃)
selvvvval.r (𝜑𝑅 ∈ CRing)
selvvvval.j (𝜑𝐽𝐼)
selvvvval.f (𝜑𝐹𝐵)
selvvvval.y (𝜑𝑌𝐷)
Assertion
Ref Expression
selvvvval (𝜑 → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽))) = (𝐹𝑌))
Distinct variable groups:   ,𝐼   ,𝐽   𝑅,   ,𝑌
Allowed substitution hints:   𝜑()   𝐵()   𝐷()   𝑃()   𝐹()

Proof of Theorem selvvvval
Dummy variables 𝑒 𝑔 𝑖 𝑗 𝑘 𝑡 𝑢 𝑣 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 selvvvval.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
2 selvvvval.b . . . . . 6 𝐵 = (Base‘𝑃)
3 eqid 2730 . . . . . 6 ((𝐼𝐽) mPoly 𝑅) = ((𝐼𝐽) mPoly 𝑅)
4 eqid 2730 . . . . . 6 (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) = (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))
5 eqid 2730 . . . . . 6 (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))
6 eqid 2730 . . . . . 6 ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) = ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅)))
7 selvvvval.r . . . . . 6 (𝜑𝑅 ∈ CRing)
8 selvvvval.j . . . . . 6 (𝜑𝐽𝐼)
9 selvvvval.f . . . . . 6 (𝜑𝐹𝐵)
101, 2, 3, 4, 5, 6, 7, 8, 9selvval2 42579 . . . . 5 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = (((𝐼 eval (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∘ 𝐹))‘(𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))))
11 eqid 2730 . . . . . 6 (𝐼 eval (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = (𝐼 eval (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))
12 eqid 2730 . . . . . 6 (𝐼 mPoly (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = (𝐼 mPoly (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))
13 eqid 2730 . . . . . 6 (Base‘(𝐼 mPoly (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) = (Base‘(𝐼 mPoly (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
14 selvvvval.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
15 eqid 2730 . . . . . 6 (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))
16 eqid 2730 . . . . . 6 (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))
17 eqid 2730 . . . . . 6 (.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) = (.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
18 eqid 2730 . . . . . 6 (.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = (.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))
191, 2mplrcl 21910 . . . . . . 7 (𝐹𝐵𝐼 ∈ V)
209, 19syl 17 . . . . . 6 (𝜑𝐼 ∈ V)
2120, 8ssexd 5282 . . . . . . 7 (𝜑𝐽 ∈ V)
2220difexd 5289 . . . . . . . 8 (𝜑 → (𝐼𝐽) ∈ V)
233, 22, 7mplcrngd 42542 . . . . . . 7 (𝜑 → ((𝐼𝐽) mPoly 𝑅) ∈ CRing)
244, 21, 23mplcrngd 42542 . . . . . 6 (𝜑 → (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ CRing)
254mplassa 21938 . . . . . . . . . . 11 ((𝐽 ∈ V ∧ ((𝐼𝐽) mPoly 𝑅) ∈ CRing) → (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ AssAlg)
2621, 23, 25syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ AssAlg)
27 eqid 2730 . . . . . . . . . . 11 (Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = (Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))
285, 27asclrhm 21806 . . . . . . . . . 10 ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ AssAlg → (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ ((Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) RingHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
2926, 28syl 17 . . . . . . . . 9 (𝜑 → (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ ((Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) RingHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
303mplassa 21938 . . . . . . . . . . . 12 (((𝐼𝐽) ∈ V ∧ 𝑅 ∈ CRing) → ((𝐼𝐽) mPoly 𝑅) ∈ AssAlg)
3122, 7, 30syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐼𝐽) mPoly 𝑅) ∈ AssAlg)
32 eqid 2730 . . . . . . . . . . . 12 (algSc‘((𝐼𝐽) mPoly 𝑅)) = (algSc‘((𝐼𝐽) mPoly 𝑅))
33 eqid 2730 . . . . . . . . . . . 12 (Scalar‘((𝐼𝐽) mPoly 𝑅)) = (Scalar‘((𝐼𝐽) mPoly 𝑅))
3432, 33asclrhm 21806 . . . . . . . . . . 11 (((𝐼𝐽) mPoly 𝑅) ∈ AssAlg → (algSc‘((𝐼𝐽) mPoly 𝑅)) ∈ ((Scalar‘((𝐼𝐽) mPoly 𝑅)) RingHom ((𝐼𝐽) mPoly 𝑅)))
3531, 34syl 17 . . . . . . . . . 10 (𝜑 → (algSc‘((𝐼𝐽) mPoly 𝑅)) ∈ ((Scalar‘((𝐼𝐽) mPoly 𝑅)) RingHom ((𝐼𝐽) mPoly 𝑅)))
363, 22, 7mplsca 21929 . . . . . . . . . . . 12 (𝜑𝑅 = (Scalar‘((𝐼𝐽) mPoly 𝑅)))
3736eqcomd 2736 . . . . . . . . . . 11 (𝜑 → (Scalar‘((𝐼𝐽) mPoly 𝑅)) = 𝑅)
384, 21, 23mplsca 21929 . . . . . . . . . . 11 (𝜑 → ((𝐼𝐽) mPoly 𝑅) = (Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
3937, 38oveq12d 7408 . . . . . . . . . 10 (𝜑 → ((Scalar‘((𝐼𝐽) mPoly 𝑅)) RingHom ((𝐼𝐽) mPoly 𝑅)) = (𝑅 RingHom (Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
4035, 39eleqtrd 2831 . . . . . . . . 9 (𝜑 → (algSc‘((𝐼𝐽) mPoly 𝑅)) ∈ (𝑅 RingHom (Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
41 rhmco 20417 . . . . . . . . 9 (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ ((Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) RingHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∧ (algSc‘((𝐼𝐽) mPoly 𝑅)) ∈ (𝑅 RingHom (Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∈ (𝑅 RingHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
4229, 40, 41syl2anc 584 . . . . . . . 8 (𝜑 → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∈ (𝑅 RingHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
43 rhmghm 20400 . . . . . . . 8 (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∈ (𝑅 RingHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∈ (𝑅 GrpHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
44 ghmmhm 19165 . . . . . . . 8 (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∈ (𝑅 GrpHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∈ (𝑅 MndHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
4542, 43, 443syl 18 . . . . . . 7 (𝜑 → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∈ (𝑅 MndHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
461, 12, 2, 13, 45, 9mhmcompl 22274 . . . . . 6 (𝜑 → (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∘ 𝐹) ∈ (Base‘(𝐼 mPoly (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
47 fvexd 6876 . . . . . . 7 (𝜑 → (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ V)
48 eqid 2730 . . . . . . . . . . . 12 (𝐽 mVar ((𝐼𝐽) mPoly 𝑅)) = (𝐽 mVar ((𝐼𝐽) mPoly 𝑅))
4923crngringd 20162 . . . . . . . . . . . 12 (𝜑 → ((𝐼𝐽) mPoly 𝑅) ∈ Ring)
504, 48, 15, 21, 49mvrf2 21909 . . . . . . . . . . 11 (𝜑 → (𝐽 mVar ((𝐼𝐽) mPoly 𝑅)):𝐽⟶(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
5150ffvelcdmda 7059 . . . . . . . . . 10 ((𝜑𝑧𝐽) → ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
5251adantlr 715 . . . . . . . . 9 (((𝜑𝑧𝐼) ∧ 𝑧𝐽) → ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
53 eldif 3927 . . . . . . . . . . 11 (𝑧 ∈ (𝐼𝐽) ↔ (𝑧𝐼 ∧ ¬ 𝑧𝐽))
54 eqid 2730 . . . . . . . . . . . . . 14 (Base‘((𝐼𝐽) mPoly 𝑅)) = (Base‘((𝐼𝐽) mPoly 𝑅))
554, 15, 54, 5, 21, 49mplasclf 21979 . . . . . . . . . . . . 13 (𝜑 → (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))):(Base‘((𝐼𝐽) mPoly 𝑅))⟶(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
5655adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐼𝐽)) → (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))):(Base‘((𝐼𝐽) mPoly 𝑅))⟶(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
57 eqid 2730 . . . . . . . . . . . . . 14 ((𝐼𝐽) mVar 𝑅) = ((𝐼𝐽) mVar 𝑅)
587crngringd 20162 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
593, 57, 54, 22, 58mvrf2 21909 . . . . . . . . . . . . 13 (𝜑 → ((𝐼𝐽) mVar 𝑅):(𝐼𝐽)⟶(Base‘((𝐼𝐽) mPoly 𝑅)))
6059ffvelcdmda 7059 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐼𝐽)) → (((𝐼𝐽) mVar 𝑅)‘𝑧) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
6156, 60ffvelcdmd 7060 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐽)) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧)) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
6253, 61sylan2br 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐼 ∧ ¬ 𝑧𝐽)) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧)) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
6362anassrs 467 . . . . . . . . 9 (((𝜑𝑧𝐼) ∧ ¬ 𝑧𝐽) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧)) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
6452, 63ifclda 4527 . . . . . . . 8 ((𝜑𝑧𝐼) → if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
6564fmpttd 7090 . . . . . . 7 (𝜑 → (𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧)))):𝐼⟶(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
6647, 20, 65elmapdd 8817 . . . . . 6 (𝜑 → (𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧)))) ∈ ((Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↑m 𝐼))
6711, 12, 13, 14, 15, 16, 17, 18, 20, 24, 46, 66evlvvval 42568 . . . . 5 (𝜑 → (((𝐼 eval (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∘ 𝐹))‘(𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))) = ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔)(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))))))))
68 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
691, 68, 2, 14, 9mplelf 21914 . . . . . . . . . . . 12 (𝜑𝐹:𝐷⟶(Base‘𝑅))
7069adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → 𝐹:𝐷⟶(Base‘𝑅))
71 simpr 484 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → 𝑔𝐷)
7270, 71fvco3d 6964 . . . . . . . . . 10 ((𝜑𝑔𝐷) → ((((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔) = (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅)))‘(𝐹𝑔)))
733, 54, 68, 32, 22, 58mplasclf 21979 . . . . . . . . . . . 12 (𝜑 → (algSc‘((𝐼𝐽) mPoly 𝑅)):(Base‘𝑅)⟶(Base‘((𝐼𝐽) mPoly 𝑅)))
7473adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → (algSc‘((𝐼𝐽) mPoly 𝑅)):(Base‘𝑅)⟶(Base‘((𝐼𝐽) mPoly 𝑅)))
7569ffvelcdmda 7059 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → (𝐹𝑔) ∈ (Base‘𝑅))
7674, 75fvco3d 6964 . . . . . . . . . 10 ((𝜑𝑔𝐷) → (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅)))‘(𝐹𝑔)) = ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))))
7772, 76eqtrd 2765 . . . . . . . . 9 ((𝜑𝑔𝐷) → ((((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔) = ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))))
7816, 15mgpbas 20061 . . . . . . . . . . 11 (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = (Base‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
79 eqid 2730 . . . . . . . . . . 11 (0g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) = (0g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
8016, 18mgpplusg 20060 . . . . . . . . . . 11 (.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = (+g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
8116crngmgp 20157 . . . . . . . . . . . . 13 ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ CRing → (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ CMnd)
8224, 81syl 17 . . . . . . . . . . . 12 (𝜑 → (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ CMnd)
8382adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ CMnd)
8420adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → 𝐼 ∈ V)
8582cmnmndd 19741 . . . . . . . . . . . . . 14 (𝜑 → (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ Mnd)
8685ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑔𝐷) ∧ 𝑘𝐼) → (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ Mnd)
8714psrbagf 21834 . . . . . . . . . . . . . . 15 (𝑔𝐷𝑔:𝐼⟶ℕ0)
8887adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → 𝑔:𝐼⟶ℕ0)
8988ffvelcdmda 7059 . . . . . . . . . . . . 13 (((𝜑𝑔𝐷) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ ℕ0)
90 eqid 2730 . . . . . . . . . . . . . . 15 (𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧)))) = (𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))
91 eleq1w 2812 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑘 → (𝑧𝐽𝑘𝐽))
92 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑘 → ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧) = ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))
93 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑘 → (((𝐼𝐽) mVar 𝑅)‘𝑧) = (((𝐼𝐽) mVar 𝑅)‘𝑘))
9493fveq2d 6865 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑘 → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧)) = ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘)))
9591, 92, 94ifbieq12d 4520 . . . . . . . . . . . . . . 15 (𝑧 = 𝑘 → if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))) = if(𝑘𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))))
96 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐷) ∧ 𝑘𝐼) → 𝑘𝐼)
9750ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐷) ∧ 𝑘𝐼) → (𝐽 mVar ((𝐼𝐽) mPoly 𝑅)):𝐽⟶(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
9897ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔𝐷) ∧ 𝑘𝐼) ∧ 𝑘𝐽) → ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
99 eldif 3927 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝐼𝐽) ↔ (𝑘𝐼 ∧ ¬ 𝑘𝐽))
10055adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (𝐼𝐽)) → (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))):(Base‘((𝐼𝐽) mPoly 𝑅))⟶(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
10159ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (𝐼𝐽)) → (((𝐼𝐽) mVar 𝑅)‘𝑘) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
102100, 101ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (𝐼𝐽)) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
10399, 102sylan2br 595 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘𝐼 ∧ ¬ 𝑘𝐽)) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
104103anassrs 467 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ ¬ 𝑘𝐽) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
105104adantllr 719 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔𝐷) ∧ 𝑘𝐼) ∧ ¬ 𝑘𝐽) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
10698, 105ifclda 4527 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐷) ∧ 𝑘𝐼) → if(𝑘𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
10790, 95, 96, 106fvmptd3 6994 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐷) ∧ 𝑘𝐼) → ((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘) = if(𝑘𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))))
108107, 106eqeltrd 2829 . . . . . . . . . . . . 13 (((𝜑𝑔𝐷) ∧ 𝑘𝐼) → ((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
10978, 17, 86, 89, 108mulgnn0cld 19034 . . . . . . . . . . . 12 (((𝜑𝑔𝐷) ∧ 𝑘𝐼) → ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
110109fmpttd 7090 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → (𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))):𝐼⟶(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
11188feqmptd 6932 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → 𝑔 = (𝑘𝐼 ↦ (𝑔𝑘)))
11214psrbagfsupp 21835 . . . . . . . . . . . . . 14 (𝑔𝐷𝑔 finSupp 0)
113112adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → 𝑔 finSupp 0)
114111, 113eqbrtrrd 5134 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → (𝑘𝐼 ↦ (𝑔𝑘)) finSupp 0)
11578, 79, 17mulg0 19013 . . . . . . . . . . . . 13 (𝑡 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) → (0(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))𝑡) = (0g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
116115adantl 481 . . . . . . . . . . . 12 (((𝜑𝑔𝐷) ∧ 𝑡 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) → (0(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))𝑡) = (0g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
117 fvexd 6876 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → (0g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) ∈ V)
118114, 116, 89, 108, 117fsuppssov1 9342 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → (𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) finSupp (0g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
119 disjdifr 4439 . . . . . . . . . . . 12 ((𝐼𝐽) ∩ 𝐽) = ∅
120119a1i 11 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → ((𝐼𝐽) ∩ 𝐽) = ∅)
121 undifr 4449 . . . . . . . . . . . . . 14 (𝐽𝐼 ↔ ((𝐼𝐽) ∪ 𝐽) = 𝐼)
1228, 121sylib 218 . . . . . . . . . . . . 13 (𝜑 → ((𝐼𝐽) ∪ 𝐽) = 𝐼)
123122eqcomd 2736 . . . . . . . . . . . 12 (𝜑𝐼 = ((𝐼𝐽) ∪ 𝐽))
124123adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → 𝐼 = ((𝐼𝐽) ∪ 𝐽))
12578, 79, 80, 83, 84, 110, 118, 120, 124gsumsplit 19865 . . . . . . . . . 10 ((𝜑𝑔𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘)))) = (((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼𝐽)))(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ 𝐽))))
126 eldifi 4097 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝐼𝐽) → 𝑘𝐼)
127126adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → 𝑘𝐼)
128126, 106sylan2 593 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → if(𝑘𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
12990, 95, 127, 128fvmptd3 6994 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘) = if(𝑘𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))))
130 eldifn 4098 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝐼𝐽) → ¬ 𝑘𝐽)
131130adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ¬ 𝑘𝐽)
132131iffalsed 4502 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → if(𝑘𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))) = ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘)))
133129, 132eqtrd 2765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘) = ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘)))
134133oveq2d 7406 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘)) = ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))))
135 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) = (mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
136135, 16rhmmhm 20395 . . . . . . . . . . . . . . . . . . 19 ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ ((Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) RingHom (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) → (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) MndHom (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
13729, 136syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) MndHom (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
138137ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) MndHom (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
139126, 89sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → (𝑔𝑘) ∈ ℕ0)
140101adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → (((𝐼𝐽) mVar 𝑅)‘𝑘) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
14138fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘((𝐼𝐽) mPoly 𝑅)) = (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
142141ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → (Base‘((𝐼𝐽) mPoly 𝑅)) = (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
143140, 142eleqtrd 2831 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → (((𝐼𝐽) mVar 𝑅)‘𝑘) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
144 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) = (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
145135, 144mgpbas 20061 . . . . . . . . . . . . . . . . . 18 (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) = (Base‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
146 eqid 2730 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))) = (.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
147145, 146, 17mhmmulg 19054 . . . . . . . . . . . . . . . . 17 (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) MndHom (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) ∧ (𝑔𝑘) ∈ ℕ0 ∧ (((𝐼𝐽) mVar 𝑅)‘𝑘) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))) = ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))))
148138, 139, 143, 147syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))) = ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))))
149134, 148eqtr4d 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘)) = ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))))
150149mpteq2dva 5203 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))
151 difssd 4103 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → (𝐼𝐽) ⊆ 𝐼)
152151resmptd 6014 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼𝐽)) = (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))))
15355adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))):(Base‘((𝐼𝐽) mPoly 𝑅))⟶(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
15438fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (mulGrp‘((𝐼𝐽) mPoly 𝑅)) = (mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
155154fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (𝜑 → (.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅))) = (.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))))
156155ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → (.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅))) = (.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))))
157156oveqd 7407 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)) = ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))
158 eqid 2730 . . . . . . . . . . . . . . . . . 18 (mulGrp‘((𝐼𝐽) mPoly 𝑅)) = (mulGrp‘((𝐼𝐽) mPoly 𝑅))
159158, 54mgpbas 20061 . . . . . . . . . . . . . . . . 17 (Base‘((𝐼𝐽) mPoly 𝑅)) = (Base‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))
160 eqid 2730 . . . . . . . . . . . . . . . . 17 (.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅))) = (.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))
161158crngmgp 20157 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝐽) mPoly 𝑅) ∈ CRing → (mulGrp‘((𝐼𝐽) mPoly 𝑅)) ∈ CMnd)
16223, 161syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (mulGrp‘((𝐼𝐽) mPoly 𝑅)) ∈ CMnd)
163162cmnmndd 19741 . . . . . . . . . . . . . . . . . 18 (𝜑 → (mulGrp‘((𝐼𝐽) mPoly 𝑅)) ∈ Mnd)
164163ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → (mulGrp‘((𝐼𝐽) mPoly 𝑅)) ∈ Mnd)
165159, 160, 164, 139, 140mulgnn0cld 19034 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
166157, 165eqeltrrd 2830 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
167153, 166cofmpt 7107 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))) = (𝑘 ∈ (𝐼𝐽) ↦ ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))
168150, 152, 1673eqtr4d 2775 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼𝐽)) = ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))
169168oveq2d 7406 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼𝐽))) = ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))))))
170 eqid 2730 . . . . . . . . . . . . 13 (0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))) = (0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
17138, 23eqeltrrd 2830 . . . . . . . . . . . . . . 15 (𝜑 → (Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ CRing)
172135crngmgp 20157 . . . . . . . . . . . . . . 15 ((Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ CRing → (mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) ∈ CMnd)
173171, 172syl 17 . . . . . . . . . . . . . 14 (𝜑 → (mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) ∈ CMnd)
174173adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) ∈ CMnd)
17585adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ Mnd)
17622adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (𝐼𝐽) ∈ V)
177137adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) MndHom (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
178166, 142eleqtrd 2831 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
179178fmpttd 7090 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))):(𝐼𝐽)⟶(Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
180 0zd 12548 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → 0 ∈ ℤ)
181114, 151, 180fmptssfisupp 9352 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → (𝑘 ∈ (𝐼𝐽) ↦ (𝑔𝑘)) finSupp 0)
182141eqimssd 4006 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘((𝐼𝐽) mPoly 𝑅)) ⊆ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
183182sselda 3949 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (Base‘((𝐼𝐽) mPoly 𝑅))) → 𝑢 ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
184183adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐷) ∧ 𝑢 ∈ (Base‘((𝐼𝐽) mPoly 𝑅))) → 𝑢 ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
185145, 170, 146mulg0 19013 . . . . . . . . . . . . . . 15 (𝑢 ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) → (0(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))𝑢) = (0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))))
186184, 185syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐷) ∧ 𝑢 ∈ (Base‘((𝐼𝐽) mPoly 𝑅))) → (0(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))𝑢) = (0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))))
187 fvexd 6876 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → (0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))) ∈ V)
188181, 186, 139, 140, 187fsuppssov1 9342 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))) finSupp (0g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))))
189145, 170, 174, 175, 176, 177, 179, 188gsummhm 19875 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))))) = ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))))))
190169, 189eqtrd 2765 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼𝐽))) = ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))))))
1918adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → 𝐽𝐼)
192191resmptd 6014 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ 𝐽) = (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))))
193191sselda 3949 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → 𝑘𝐼)
194193, 106syldan 591 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → if(𝑘𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
19590, 95, 193, 194fvmptd3 6994 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → ((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘) = if(𝑘𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))))
196 iftrue 4497 . . . . . . . . . . . . . . . . 17 (𝑘𝐽 → if(𝑘𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))) = ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))
197196adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → if(𝑘𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑘))) = ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))
198195, 197eqtrd 2765 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → ((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘) = ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))
199198oveq2d 7406 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘)) = ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))
200199mpteq2dva 5203 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) = (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))
201192, 200eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ 𝐽) = (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))
202201oveq2d 7406 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ 𝐽)) = ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))
203190, 202oveq12d 7408 . . . . . . . . . 10 ((𝜑𝑔𝐷) → (((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ (𝐼𝐽)))(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg ((𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))) ↾ 𝐽))) = (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))
20426adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ AssAlg)
205145, 170, 174, 176, 179, 188gsumcl 19852 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
20621adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → 𝐽 ∈ V)
20785ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → (mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ Mnd)
208193, 89syldan 591 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → (𝑔𝑘) ∈ ℕ0)
20950ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐽) → ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
210209adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
21178, 17, 207, 208, 210mulgnn0cld 19034 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
212211fmpttd 7090 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))):𝐽⟶(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
213114, 191, 180fmptssfisupp 9352 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → (𝑘𝐽 ↦ (𝑔𝑘)) finSupp 0)
214213, 116, 208, 210, 117fsuppssov1 9342 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))) finSupp (0g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
21578, 79, 83, 206, 212, 214gsumcl 19852 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
216 eqid 2730 . . . . . . . . . . . . 13 ( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = ( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))
2175, 27, 144, 15, 18, 216asclmul1 21802 . . . . . . . . . . . 12 (((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ AssAlg ∧ ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) ∧ ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) → (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))) = (((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))
218204, 205, 215, 217syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))) = (((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))
219155oveqd 7407 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)) = ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))
220219mpteq2dv 5204 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))))
221154, 220oveq12d 7408 . . . . . . . . . . . . 13 (𝜑 → ((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)))) = ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))
222221adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → ((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)))) = ((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))
223222oveq1d 7405 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → (((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))) = (((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))
224218, 223eqtr4d 2768 . . . . . . . . . 10 ((𝜑𝑔𝐷) → (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))) = (((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))
225125, 203, 2243eqtrd 2769 . . . . . . . . 9 ((𝜑𝑔𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘)))) = (((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))
22677, 225oveq12d 7408 . . . . . . . 8 ((𝜑𝑔𝐷) → (((((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔)(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))))) = (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔)))(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))
22774, 75ffvelcdmd 7060 . . . . . . . . . 10 ((𝜑𝑔𝐷) → ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔)) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
228141adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐷) → (Base‘((𝐼𝐽) mPoly 𝑅)) = (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
229227, 228eleqtrd 2831 . . . . . . . . 9 ((𝜑𝑔𝐷) → ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔)) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
2304, 21, 49mpllmodd 21940 . . . . . . . . . . 11 (𝜑 → (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ LMod)
231230adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐷) → (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ LMod)
232 eqid 2730 . . . . . . . . . . . 12 (0g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅))) = (0g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))
233162adantr 480 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → (mulGrp‘((𝐼𝐽) mPoly 𝑅)) ∈ CMnd)
234165fmpttd 7090 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))):(𝐼𝐽)⟶(Base‘((𝐼𝐽) mPoly 𝑅)))
235159, 232, 160mulg0 19013 . . . . . . . . . . . . . 14 (𝑒 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) → (0(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))𝑒) = (0g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅))))
236235adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑔𝐷) ∧ 𝑒 ∈ (Base‘((𝐼𝐽) mPoly 𝑅))) → (0(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))𝑒) = (0g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅))))
237 fvexd 6876 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (0g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅))) ∈ V)
238181, 236, 139, 140, 237fsuppssov1 9342 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))) finSupp (0g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅))))
239159, 232, 233, 176, 234, 238gsumcl 19852 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → ((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)))) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
240239, 228eleqtrd 2831 . . . . . . . . . 10 ((𝜑𝑔𝐷) → ((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)))) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
24115, 27, 216, 144, 231, 240, 215lmodvscld 20792 . . . . . . . . 9 ((𝜑𝑔𝐷) → (((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
2425, 27, 144, 15, 18, 216asclmul1 21802 . . . . . . . . 9 (((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ AssAlg ∧ ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔)) ∈ (Base‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) ∧ (((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) → (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔)))(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))) = (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))
243204, 229, 241, 242syl3anc 1373 . . . . . . . 8 ((𝜑𝑔𝐷) → (((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔)))(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))) = (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))
244226, 243eqtrd 2765 . . . . . . 7 ((𝜑𝑔𝐷) → (((((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔)(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))))) = (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))
245244mpteq2dva 5203 . . . . . 6 (𝜑 → (𝑔𝐷 ↦ (((((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔)(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘)))))) = (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))
246245oveq2d 7406 . . . . 5 (𝜑 → ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∘ (algSc‘((𝐼𝐽) mPoly 𝑅))) ∘ 𝐹)‘𝑔)(.r‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐼 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝑧𝐼 ↦ if(𝑧𝐽, ((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑧), ((algSc‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))‘(((𝐼𝐽) mVar 𝑅)‘𝑧))))‘𝑘))))))) = ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))
24710, 67, 2463eqtrd 2769 . . . 4 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))
248247fveq1d 6863 . . 3 (𝜑 → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑌𝐽)) = (((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌𝐽)))
249248fveq1d 6863 . 2 (𝜑 → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽))) = ((((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽))))
250 eqid 2730 . . . 4 (0g‘((𝐼𝐽) mPoly 𝑅)) = (0g‘((𝐼𝐽) mPoly 𝑅))
25149ringcmnd 20200 . . . 4 (𝜑 → ((𝐼𝐽) mPoly 𝑅) ∈ CMnd)
2527crnggrpd 20163 . . . . 5 (𝜑𝑅 ∈ Grp)
253252grpmndd 18885 . . . 4 (𝜑𝑅 ∈ Mnd)
254 ovex 7423 . . . . . 6 (ℕ0m 𝐼) ∈ V
25514, 254rabex2 5299 . . . . 5 𝐷 ∈ V
256255a1i 11 . . . 4 (𝜑𝐷 ∈ V)
257 eqid 2730 . . . . . 6 {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} = {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin}
258 eqid 2730 . . . . . 6 (𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) = (𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽))))
259 difssd 4103 . . . . . . 7 (𝜑 → (𝐼𝐽) ⊆ 𝐼)
260 selvvvval.y . . . . . . 7 (𝜑𝑌𝐷)
26114, 257, 20, 259, 260psrbagres 42541 . . . . . 6 (𝜑 → (𝑌 ↾ (𝐼𝐽)) ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin})
2623, 54, 257, 258, 22, 252, 261mplmapghm 42551 . . . . 5 (𝜑 → (𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) ∈ (((𝐼𝐽) mPoly 𝑅) GrpHom 𝑅))
263 ghmmhm 19165 . . . . 5 ((𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) ∈ (((𝐼𝐽) mPoly 𝑅) GrpHom 𝑅) → (𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) ∈ (((𝐼𝐽) mPoly 𝑅) MndHom 𝑅))
264262, 263syl 17 . . . 4 (𝜑 → (𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) ∈ (((𝐼𝐽) mPoly 𝑅) MndHom 𝑅))
265 eqid 2730 . . . . . . . 8 {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin}
266 simpr 484 . . . . . . . 8 ((𝜑𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) → 𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
2674, 54, 15, 265, 266mplelf 21914 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) → 𝑤:{𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin}⟶(Base‘((𝐼𝐽) mPoly 𝑅)))
26814, 265, 20, 8, 260psrbagres 42541 . . . . . . . 8 (𝜑 → (𝑌𝐽) ∈ {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin})
269268adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) → (𝑌𝐽) ∈ {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin})
270267, 269ffvelcdmd 7060 . . . . . 6 ((𝜑𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) → (𝑤‘(𝑌𝐽)) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
271270fmpttd 7090 . . . . 5 (𝜑 → (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))):(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))⟶(Base‘((𝐼𝐽) mPoly 𝑅)))
27215, 27, 216, 144, 231, 229, 241lmodvscld 20792 . . . . . 6 ((𝜑𝑔𝐷) → (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
273272fmpttd 7090 . . . . 5 (𝜑 → (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))):𝐷⟶(Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
274271, 273fcod 6716 . . . 4 (𝜑 → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))):𝐷⟶(Base‘((𝐼𝐽) mPoly 𝑅)))
275 fvexd 6876 . . . . 5 (𝜑 → (0g‘((𝐼𝐽) mPoly 𝑅)) ∈ V)
27624crngringd 20162 . . . . . 6 (𝜑 → (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ Ring)
277 eqid 2730 . . . . . . 7 (0g‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) = (0g‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))
27815, 277ring0cl 20183 . . . . . 6 ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ Ring → (0g‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
279276, 278syl 17 . . . . 5 (𝜑 → (0g‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
280 ssidd 3973 . . . . 5 (𝜑 → (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ⊆ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
281255mptex 7200 . . . . . . . 8 (𝑔𝐷 ↦ ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))) ∈ V
282281a1i 11 . . . . . . 7 (𝜑 → (𝑔𝐷 ↦ ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))) ∈ V)
283 fvexd 6876 . . . . . . 7 (𝜑 → (0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) ∈ V)
284 funmpt 6557 . . . . . . . 8 Fun (𝑔𝐷 ↦ ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔)))
285284a1i 11 . . . . . . 7 (𝜑 → Fun (𝑔𝐷 ↦ ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))))
286 eqid 2730 . . . . . . . 8 (0g𝑅) = (0g𝑅)
2871, 2, 286, 9mplelsfi 21911 . . . . . . 7 (𝜑𝐹 finSupp (0g𝑅))
288 ssidd 3973 . . . . . . . . . . 11 (𝜑 → (𝐹 supp (0g𝑅)) ⊆ (𝐹 supp (0g𝑅)))
289 fvexd 6876 . . . . . . . . . . 11 (𝜑 → (0g𝑅) ∈ V)
29069, 288, 9, 289suppssrg 8178 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝐷 ∖ (𝐹 supp (0g𝑅)))) → (𝐹𝑔) = (0g𝑅))
291290fveq2d 6865 . . . . . . . . 9 ((𝜑𝑔 ∈ (𝐷 ∖ (𝐹 supp (0g𝑅)))) → ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔)) = ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(0g𝑅)))
2923, 32, 286, 250, 22, 58mplascl0 42549 . . . . . . . . . . 11 (𝜑 → ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(0g𝑅)) = (0g‘((𝐼𝐽) mPoly 𝑅)))
29338fveq2d 6865 . . . . . . . . . . 11 (𝜑 → (0g‘((𝐼𝐽) mPoly 𝑅)) = (0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
294292, 293eqtrd 2765 . . . . . . . . . 10 (𝜑 → ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(0g𝑅)) = (0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
295294adantr 480 . . . . . . . . 9 ((𝜑𝑔 ∈ (𝐷 ∖ (𝐹 supp (0g𝑅)))) → ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(0g𝑅)) = (0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
296291, 295eqtrd 2765 . . . . . . . 8 ((𝜑𝑔 ∈ (𝐷 ∖ (𝐹 supp (0g𝑅)))) → ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔)) = (0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
297296, 256suppss2 8182 . . . . . . 7 (𝜑 → ((𝑔𝐷 ↦ ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))) supp (0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))) ⊆ (𝐹 supp (0g𝑅)))
298282, 283, 285, 287, 297fsuppsssuppgd 9340 . . . . . 6 (𝜑 → (𝑔𝐷 ↦ ((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))) finSupp (0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))))
299 eqid 2730 . . . . . . . 8 (0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) = (0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
30015, 27, 216, 299, 277lmod0vs 20808 . . . . . . 7 (((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ LMod ∧ 𝑓 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) → ((0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))𝑓) = (0g‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
301230, 300sylan 580 . . . . . 6 ((𝜑𝑓 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) → ((0g‘(Scalar‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))𝑓) = (0g‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
302 fvexd 6876 . . . . . 6 (𝜑 → (0g‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ∈ V)
303298, 301, 227, 241, 302fsuppssov1 9342 . . . . 5 (𝜑 → (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))) finSupp (0g‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
304 eqid 2730 . . . . . . . 8 (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) = (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽)))
30523crnggrpd 20163 . . . . . . . 8 (𝜑 → ((𝐼𝐽) mPoly 𝑅) ∈ Grp)
3064, 15, 265, 304, 21, 305, 268mplmapghm 42551 . . . . . . 7 (𝜑 → (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∈ ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) GrpHom ((𝐼𝐽) mPoly 𝑅)))
307 ghmmhm 19165 . . . . . . 7 ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∈ ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) GrpHom ((𝐼𝐽) mPoly 𝑅)) → (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∈ ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) MndHom ((𝐼𝐽) mPoly 𝑅)))
308306, 307syl 17 . . . . . 6 (𝜑 → (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∈ ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) MndHom ((𝐼𝐽) mPoly 𝑅)))
309277, 250mhm0 18728 . . . . . 6 ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∈ ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) MndHom ((𝐼𝐽) mPoly 𝑅)) → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽)))‘(0g‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) = (0g‘((𝐼𝐽) mPoly 𝑅)))
310308, 309syl 17 . . . . 5 (𝜑 → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽)))‘(0g‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))) = (0g‘((𝐼𝐽) mPoly 𝑅)))
311275, 279, 273, 271, 280, 256, 47, 303, 310fsuppcor 9362 . . . 4 (𝜑 → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))) finSupp (0g‘((𝐼𝐽) mPoly 𝑅)))
31254, 250, 251, 253, 256, 264, 274, 311gsummhm 19875 . . 3 (𝜑 → (𝑅 Σg ((𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))) = ((𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽))))‘(((𝐼𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))))
313 fveq1 6860 . . . 4 (𝑣 = (((𝐼𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))) → (𝑣‘(𝑌 ↾ (𝐼𝐽))) = ((((𝐼𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))‘(𝑌 ↾ (𝐼𝐽))))
31454, 250, 251, 256, 274, 311gsumcl 19852 . . . 4 (𝜑 → (((𝐼𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
315 fvexd 6876 . . . 4 (𝜑 → ((((𝐼𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))‘(𝑌 ↾ (𝐼𝐽))) ∈ V)
316258, 313, 314, 315fvmptd3 6994 . . 3 (𝜑 → ((𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽))))‘(((𝐼𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))) = ((((𝐼𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))‘(𝑌 ↾ (𝐼𝐽))))
317276ringcmnd 20200 . . . . . 6 (𝜑 → (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) ∈ CMnd)
318305grpmndd 18885 . . . . . 6 (𝜑 → ((𝐼𝐽) mPoly 𝑅) ∈ Mnd)
31915, 277, 317, 318, 256, 308, 273, 303gsummhm 19875 . . . . 5 (𝜑 → (((𝐼𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))) = ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽)))‘((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))))
320 fveq1 6860 . . . . . 6 (𝑤 = ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))) → (𝑤‘(𝑌𝐽)) = (((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌𝐽)))
32115, 277, 317, 256, 273, 303gsumcl 19852 . . . . . 6 (𝜑 → ((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))) ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))
322 fvexd 6876 . . . . . 6 (𝜑 → (((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌𝐽)) ∈ V)
323304, 320, 321, 322fvmptd3 6994 . . . . 5 (𝜑 → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽)))‘((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))) = (((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌𝐽)))
324319, 323eqtrd 2765 . . . 4 (𝜑 → (((𝐼𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))) = (((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌𝐽)))
325324fveq1d 6863 . . 3 (𝜑 → ((((𝐼𝐽) mPoly 𝑅) Σg ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))‘(𝑌 ↾ (𝐼𝐽))) = ((((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽))))
326312, 316, 3253eqtrrd 2770 . 2 (𝜑 → ((((𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)) Σg (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽))) = (𝑅 Σg ((𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))))
3274, 54, 15, 265, 272mplelf 21914 . . . . . . 7 ((𝜑𝑔𝐷) → (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))):{𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin}⟶(Base‘((𝐼𝐽) mPoly 𝑅)))
328268adantr 480 . . . . . . 7 ((𝜑𝑔𝐷) → (𝑌𝐽) ∈ {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin})
329327, 328ffvelcdmd 7060 . . . . . 6 ((𝜑𝑔𝐷) → ((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽)) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
330 eqidd 2731 . . . . . . 7 (𝜑 → (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))) = (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))
331 eqidd 2731 . . . . . . 7 (𝜑 → (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) = (𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))))
332 fveq1 6860 . . . . . . 7 (𝑤 = (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))) → (𝑤‘(𝑌𝐽)) = ((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽)))
333272, 330, 331, 332fmptco 7104 . . . . . 6 (𝜑 → ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))) = (𝑔𝐷 ↦ ((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽))))
334 eqidd 2731 . . . . . 6 (𝜑 → (𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) = (𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))))
335 fveq1 6860 . . . . . 6 (𝑣 = ((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽)) → (𝑣‘(𝑌 ↾ (𝐼𝐽))) = (((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽))))
336329, 333, 334, 335fmptco 7104 . . . . 5 (𝜑 → ((𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))) = (𝑔𝐷 ↦ (((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽)))))
337 eqid 2730 . . . . . . . . . 10 (.r‘((𝐼𝐽) mPoly 𝑅)) = (.r‘((𝐼𝐽) mPoly 𝑅))
3384, 216, 54, 15, 337, 265, 227, 241, 328mplvscaval 21932 . . . . . . . . 9 ((𝜑𝑔𝐷) → ((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽)) = (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))(.r‘((𝐼𝐽) mPoly 𝑅))((((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))‘(𝑌𝐽))))
3394, 216, 54, 15, 337, 265, 239, 215, 328mplvscaval 21932 . . . . . . . . . 10 ((𝜑𝑔𝐷) → ((((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))‘(𝑌𝐽)) = (((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽))))
340339oveq2d 7406 . . . . . . . . 9 ((𝜑𝑔𝐷) → (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))(.r‘((𝐼𝐽) mPoly 𝑅))((((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))‘(𝑌𝐽))) = (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))))
34131adantr 480 . . . . . . . . . 10 ((𝜑𝑔𝐷) → ((𝐼𝐽) mPoly 𝑅) ∈ AssAlg)
34236fveq2d 6865 . . . . . . . . . . . 12 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘((𝐼𝐽) mPoly 𝑅))))
343342adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → (Base‘𝑅) = (Base‘(Scalar‘((𝐼𝐽) mPoly 𝑅))))
34475, 343eleqtrd 2831 . . . . . . . . . 10 ((𝜑𝑔𝐷) → (𝐹𝑔) ∈ (Base‘(Scalar‘((𝐼𝐽) mPoly 𝑅))))
34549adantr 480 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → ((𝐼𝐽) mPoly 𝑅) ∈ Ring)
3464, 54, 15, 265, 215mplelf 21914 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))):{𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin}⟶(Base‘((𝐼𝐽) mPoly 𝑅)))
347346, 328ffvelcdmd 7060 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → (((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
34854, 337, 345, 239, 347ringcld 20176 . . . . . . . . . 10 ((𝜑𝑔𝐷) → (((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽))) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
349 eqid 2730 . . . . . . . . . . 11 (Base‘(Scalar‘((𝐼𝐽) mPoly 𝑅))) = (Base‘(Scalar‘((𝐼𝐽) mPoly 𝑅)))
350 eqid 2730 . . . . . . . . . . 11 ( ·𝑠 ‘((𝐼𝐽) mPoly 𝑅)) = ( ·𝑠 ‘((𝐼𝐽) mPoly 𝑅))
35132, 33, 349, 54, 337, 350asclmul1 21802 . . . . . . . . . 10 ((((𝐼𝐽) mPoly 𝑅) ∈ AssAlg ∧ (𝐹𝑔) ∈ (Base‘(Scalar‘((𝐼𝐽) mPoly 𝑅))) ∧ (((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽))) ∈ (Base‘((𝐼𝐽) mPoly 𝑅))) → (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))) = ((𝐹𝑔)( ·𝑠 ‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))))
352341, 344, 348, 351syl3anc 1373 . . . . . . . . 9 ((𝜑𝑔𝐷) → (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))) = ((𝐹𝑔)( ·𝑠 ‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))))
353338, 340, 3523eqtrd 2769 . . . . . . . 8 ((𝜑𝑔𝐷) → ((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽)) = ((𝐹𝑔)( ·𝑠 ‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))))
354353fveq1d 6863 . . . . . . 7 ((𝜑𝑔𝐷) → (((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽))) = (((𝐹𝑔)( ·𝑠 ‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽))))‘(𝑌 ↾ (𝐼𝐽))))
355 eqid 2730 . . . . . . . 8 (.r𝑅) = (.r𝑅)
356261adantr 480 . . . . . . . 8 ((𝜑𝑔𝐷) → (𝑌 ↾ (𝐼𝐽)) ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin})
3573, 350, 68, 54, 355, 257, 75, 348, 356mplvscaval 21932 . . . . . . 7 ((𝜑𝑔𝐷) → (((𝐹𝑔)( ·𝑠 ‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽))))‘(𝑌 ↾ (𝐼𝐽))) = ((𝐹𝑔)(.r𝑅)((((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))‘(𝑌 ↾ (𝐼𝐽)))))
358 ovif2 7491 . . . . . . . . . . . . 13 ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅)))) = if((𝑌𝐽) = (𝑔𝐽), ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(1r‘((𝐼𝐽) mPoly 𝑅))), ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(0g‘((𝐼𝐽) mPoly 𝑅))))
359358fveq1i 6862 . . . . . . . . . . . 12 (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼𝐽))) = (if((𝑌𝐽) = (𝑔𝐽), ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(1r‘((𝐼𝐽) mPoly 𝑅))), ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼𝐽)))
360 iffv 6878 . . . . . . . . . . . 12 (if((𝑌𝐽) = (𝑔𝐽), ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(1r‘((𝐼𝐽) mPoly 𝑅))), ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼𝐽))) = if((𝑌𝐽) = (𝑔𝐽), (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(1r‘((𝐼𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼𝐽))), (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(0g‘((𝐼𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼𝐽))))
361359, 360eqtri 2753 . . . . . . . . . . 11 (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼𝐽))) = if((𝑌𝐽) = (𝑔𝐽), (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(1r‘((𝐼𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼𝐽))), (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(0g‘((𝐼𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼𝐽))))
362 eqeq1 2734 . . . . . . . . . . . . . 14 (𝑖 = (𝑌 ↾ (𝐼𝐽)) → (𝑖 = (𝑔 ↾ (𝐼𝐽)) ↔ (𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽))))
363362ifbid 4515 . . . . . . . . . . . . 13 (𝑖 = (𝑌 ↾ (𝐼𝐽)) → if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)) = if((𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))
364 eqid 2730 . . . . . . . . . . . . . 14 (1r‘((𝐼𝐽) mPoly 𝑅)) = (1r‘((𝐼𝐽) mPoly 𝑅))
365 eqid 2730 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
36658adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → 𝑅 ∈ Ring)
36714, 257, 84, 151, 71psrbagres 42541 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → (𝑔 ↾ (𝐼𝐽)) ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin})
3683, 54, 286, 365, 257, 176, 366, 367mplmon 21949 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → (𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅))) ∈ (Base‘((𝐼𝐽) mPoly 𝑅)))
36954, 337, 364, 345, 368ringridmd 20189 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(1r‘((𝐼𝐽) mPoly 𝑅))) = (𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅))))
370 fvexd 6876 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → (1r𝑅) ∈ V)
371 fvexd 6876 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → (0g𝑅) ∈ V)
372370, 371ifcld 4538 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → if((𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)) ∈ V)
373363, 369, 356, 372fvmptd4 6995 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(1r‘((𝐼𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼𝐽))) = if((𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))
37454, 337, 250, 345, 368ringrzd 20212 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(0g‘((𝐼𝐽) mPoly 𝑅))) = (0g‘((𝐼𝐽) mPoly 𝑅)))
3753, 257, 286, 250, 22, 252mpl0 21922 . . . . . . . . . . . . . . . 16 (𝜑 → (0g‘((𝐼𝐽) mPoly 𝑅)) = ({𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} × {(0g𝑅)}))
376375adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → (0g‘((𝐼𝐽) mPoly 𝑅)) = ({𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} × {(0g𝑅)}))
377374, 376eqtrd 2765 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(0g‘((𝐼𝐽) mPoly 𝑅))) = ({𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} × {(0g𝑅)}))
378377fveq1d 6863 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(0g‘((𝐼𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼𝐽))) = (({𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} × {(0g𝑅)})‘(𝑌 ↾ (𝐼𝐽))))
379 fvex 6874 . . . . . . . . . . . . . . 15 (0g𝑅) ∈ V
380379fvconst2 7181 . . . . . . . . . . . . . 14 ((𝑌 ↾ (𝐼𝐽)) ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} → (({𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} × {(0g𝑅)})‘(𝑌 ↾ (𝐼𝐽))) = (0g𝑅))
381356, 380syl 17 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (({𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} × {(0g𝑅)})‘(𝑌 ↾ (𝐼𝐽))) = (0g𝑅))
382378, 381eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(0g‘((𝐼𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼𝐽))) = (0g𝑅))
383373, 382ifeq12d 4513 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → if((𝑌𝐽) = (𝑔𝐽), (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(1r‘((𝐼𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼𝐽))), (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))(0g‘((𝐼𝐽) mPoly 𝑅)))‘(𝑌 ↾ (𝐼𝐽)))) = if((𝑌𝐽) = (𝑔𝐽), if((𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)), (0g𝑅)))
384361, 383eqtrid 2777 . . . . . . . . . 10 ((𝜑𝑔𝐷) → (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼𝐽))) = if((𝑌𝐽) = (𝑔𝐽), if((𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)), (0g𝑅)))
385384oveq2d 7406 . . . . . . . . 9 ((𝜑𝑔𝐷) → ((𝐹𝑔)(.r𝑅)(((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼𝐽)))) = ((𝐹𝑔)(.r𝑅)if((𝑌𝐽) = (𝑔𝐽), if((𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)), (0g𝑅))))
386 ifan 4545 . . . . . . . . . . 11 if(((𝑌𝐽) = (𝑔𝐽) ∧ (𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽))), (1r𝑅), (0g𝑅)) = if((𝑌𝐽) = (𝑔𝐽), if((𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)), (0g𝑅))
387386oveq2i 7401 . . . . . . . . . 10 ((𝐹𝑔)(.r𝑅)if(((𝑌𝐽) = (𝑔𝐽) ∧ (𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽))), (1r𝑅), (0g𝑅))) = ((𝐹𝑔)(.r𝑅)if((𝑌𝐽) = (𝑔𝐽), if((𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)), (0g𝑅)))
38814psrbagf 21834 . . . . . . . . . . . . . . . . . 18 (𝑌𝐷𝑌:𝐼⟶ℕ0)
389260, 388syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑌:𝐼⟶ℕ0)
390389ffnd 6692 . . . . . . . . . . . . . . . 16 (𝜑𝑌 Fn 𝐼)
391390adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → 𝑌 Fn 𝐼)
392 undif 4448 . . . . . . . . . . . . . . . . . 18 (𝐽𝐼 ↔ (𝐽 ∪ (𝐼𝐽)) = 𝐼)
3938, 392sylib 218 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐽 ∪ (𝐼𝐽)) = 𝐼)
394393adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐷) → (𝐽 ∪ (𝐼𝐽)) = 𝐼)
395394fneq2d 6615 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → (𝑌 Fn (𝐽 ∪ (𝐼𝐽)) ↔ 𝑌 Fn 𝐼))
396391, 395mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → 𝑌 Fn (𝐽 ∪ (𝐼𝐽)))
39788ffnd 6692 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → 𝑔 Fn 𝐼)
398394fneq2d 6615 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → (𝑔 Fn (𝐽 ∪ (𝐼𝐽)) ↔ 𝑔 Fn 𝐼))
399397, 398mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → 𝑔 Fn (𝐽 ∪ (𝐼𝐽)))
400 eqfnun 7012 . . . . . . . . . . . . . 14 ((𝑌 Fn (𝐽 ∪ (𝐼𝐽)) ∧ 𝑔 Fn (𝐽 ∪ (𝐼𝐽))) → (𝑌 = 𝑔 ↔ ((𝑌𝐽) = (𝑔𝐽) ∧ (𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)))))
401396, 399, 400syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (𝑌 = 𝑔 ↔ ((𝑌𝐽) = (𝑔𝐽) ∧ (𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)))))
402401ifbid 4515 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → if(𝑌 = 𝑔, (1r𝑅), (0g𝑅)) = if(((𝑌𝐽) = (𝑔𝐽) ∧ (𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽))), (1r𝑅), (0g𝑅)))
403402oveq2d 7406 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → ((𝐹𝑔)(.r𝑅)if(𝑌 = 𝑔, (1r𝑅), (0g𝑅))) = ((𝐹𝑔)(.r𝑅)if(((𝑌𝐽) = (𝑔𝐽) ∧ (𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽))), (1r𝑅), (0g𝑅))))
404 ovif2 7491 . . . . . . . . . . 11 ((𝐹𝑔)(.r𝑅)if(𝑌 = 𝑔, (1r𝑅), (0g𝑅))) = if(𝑌 = 𝑔, ((𝐹𝑔)(.r𝑅)(1r𝑅)), ((𝐹𝑔)(.r𝑅)(0g𝑅)))
405403, 404eqtr3di 2780 . . . . . . . . . 10 ((𝜑𝑔𝐷) → ((𝐹𝑔)(.r𝑅)if(((𝑌𝐽) = (𝑔𝐽) ∧ (𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽))), (1r𝑅), (0g𝑅))) = if(𝑌 = 𝑔, ((𝐹𝑔)(.r𝑅)(1r𝑅)), ((𝐹𝑔)(.r𝑅)(0g𝑅))))
406387, 405eqtr3id 2779 . . . . . . . . 9 ((𝜑𝑔𝐷) → ((𝐹𝑔)(.r𝑅)if((𝑌𝐽) = (𝑔𝐽), if((𝑌 ↾ (𝐼𝐽)) = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)), (0g𝑅))) = if(𝑌 = 𝑔, ((𝐹𝑔)(.r𝑅)(1r𝑅)), ((𝐹𝑔)(.r𝑅)(0g𝑅))))
407385, 406eqtrd 2765 . . . . . . . 8 ((𝜑𝑔𝐷) → ((𝐹𝑔)(.r𝑅)(((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼𝐽)))) = if(𝑌 = 𝑔, ((𝐹𝑔)(.r𝑅)(1r𝑅)), ((𝐹𝑔)(.r𝑅)(0g𝑅))))
4087adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → 𝑅 ∈ CRing)
4093, 257, 286, 365, 176, 158, 160, 57, 408, 367mplcoe2 21955 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → (𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅))) = ((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑔 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))
410 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → 𝑘 ∈ (𝐼𝐽))
411410fvresd 6881 . . . . . . . . . . . . . . 15 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → ((𝑔 ↾ (𝐼𝐽))‘𝑘) = (𝑔𝑘))
412411oveq1d 7405 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐷) ∧ 𝑘 ∈ (𝐼𝐽)) → (((𝑔 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)) = ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)))
413412mpteq2dva 5203 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (𝑘 ∈ (𝐼𝐽) ↦ (((𝑔 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))) = (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))
414413oveq2d 7406 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → ((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ (((𝑔 ↾ (𝐼𝐽))‘𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)))) = ((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))
415409, 414eqtrd 2765 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → (𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅))) = ((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘)))))
416 eqid 2730 . . . . . . . . . . . . 13 (𝑗 ∈ {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ if(𝑗 = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅)))) = (𝑗 ∈ {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ if(𝑗 = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))
417 eqeq1 2734 . . . . . . . . . . . . . 14 (𝑗 = (𝑌𝐽) → (𝑗 = (𝑔𝐽) ↔ (𝑌𝐽) = (𝑔𝐽)))
418417ifbid 4515 . . . . . . . . . . . . 13 (𝑗 = (𝑌𝐽) → if(𝑗 = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))) = if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))
419 fvexd 6876 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → (1r‘((𝐼𝐽) mPoly 𝑅)) ∈ V)
420 fvexd 6876 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → (0g‘((𝐼𝐽) mPoly 𝑅)) ∈ V)
421419, 420ifcld 4538 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))) ∈ V)
422416, 418, 328, 421fvmptd3 6994 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → ((𝑗 ∈ {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ if(𝑗 = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌𝐽)) = if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))
42323adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → ((𝐼𝐽) mPoly 𝑅) ∈ CRing)
42414, 265, 84, 191, 71psrbagres 42541 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → (𝑔𝐽) ∈ {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin})
4254, 265, 250, 364, 206, 16, 17, 48, 423, 424mplcoe2 21955 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → (𝑗 ∈ {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ if(𝑗 = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅)))) = ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ (((𝑔𝐽)‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))
426 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → 𝑘𝐽)
427426fvresd 6881 . . . . . . . . . . . . . . . . 17 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → ((𝑔𝐽)‘𝑘) = (𝑔𝑘))
428427oveq1d 7405 . . . . . . . . . . . . . . . 16 (((𝜑𝑔𝐷) ∧ 𝑘𝐽) → (((𝑔𝐽)‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)) = ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))
429428mpteq2dva 5203 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐷) → (𝑘𝐽 ↦ (((𝑔𝐽)‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))) = (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))
430429oveq2d 7406 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐷) → ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ (((𝑔𝐽)‘𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))) = ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))
431425, 430eqtrd 2765 . . . . . . . . . . . . 13 ((𝜑𝑔𝐷) → (𝑗 ∈ {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ if(𝑗 = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅)))) = ((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))
432431fveq1d 6863 . . . . . . . . . . . 12 ((𝜑𝑔𝐷) → ((𝑗 ∈ {𝑥 ∈ (ℕ0m 𝐽) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ if(𝑗 = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌𝐽)) = (((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))
433422, 432eqtr3d 2767 . . . . . . . . . . 11 ((𝜑𝑔𝐷) → if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))) = (((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))
434415, 433oveq12d 7408 . . . . . . . . . 10 ((𝜑𝑔𝐷) → ((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅)))) = (((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽))))
435434fveq1d 6863 . . . . . . . . 9 ((𝜑𝑔𝐷) → (((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼𝐽))) = ((((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))‘(𝑌 ↾ (𝐼𝐽))))
436435oveq2d 7406 . . . . . . . 8 ((𝜑𝑔𝐷) → ((𝐹𝑔)(.r𝑅)(((𝑖 ∈ {𝑦 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑦 “ ℕ) ∈ Fin} ↦ if(𝑖 = (𝑔 ↾ (𝐼𝐽)), (1r𝑅), (0g𝑅)))(.r‘((𝐼𝐽) mPoly 𝑅))if((𝑌𝐽) = (𝑔𝐽), (1r‘((𝐼𝐽) mPoly 𝑅)), (0g‘((𝐼𝐽) mPoly 𝑅))))‘(𝑌 ↾ (𝐼𝐽)))) = ((𝐹𝑔)(.r𝑅)((((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))‘(𝑌 ↾ (𝐼𝐽)))))
43768, 355, 365, 366, 75ringridmd 20189 . . . . . . . . 9 ((𝜑𝑔𝐷) → ((𝐹𝑔)(.r𝑅)(1r𝑅)) = (𝐹𝑔))
43868, 355, 286, 366, 75ringrzd 20212 . . . . . . . . 9 ((𝜑𝑔𝐷) → ((𝐹𝑔)(.r𝑅)(0g𝑅)) = (0g𝑅))
439437, 438ifeq12d 4513 . . . . . . . 8 ((𝜑𝑔𝐷) → if(𝑌 = 𝑔, ((𝐹𝑔)(.r𝑅)(1r𝑅)), ((𝐹𝑔)(.r𝑅)(0g𝑅))) = if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)))
440407, 436, 4393eqtr3d 2773 . . . . . . 7 ((𝜑𝑔𝐷) → ((𝐹𝑔)(.r𝑅)((((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))(.r‘((𝐼𝐽) mPoly 𝑅))(((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))‘(𝑌𝐽)))‘(𝑌 ↾ (𝐼𝐽)))) = if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)))
441354, 357, 4403eqtrd 2769 . . . . . 6 ((𝜑𝑔𝐷) → (((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽))) = if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)))
442441mpteq2dva 5203 . . . . 5 (𝜑 → (𝑔𝐷 ↦ (((((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽)))) = (𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))))
443336, 442eqtrd 2765 . . . 4 (𝜑 → ((𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘))))))))) = (𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))))
444443oveq2d 7406 . . 3 (𝜑 → (𝑅 Σg ((𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))) = (𝑅 Σg (𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)))))
44558ringcmnd 20200 . . . 4 (𝜑𝑅 ∈ CMnd)
44668, 286ring0cl 20183 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
44758, 446syl 17 . . . . . . 7 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
448447adantr 480 . . . . . 6 ((𝜑𝑔𝐷) → (0g𝑅) ∈ (Base‘𝑅))
44975, 448ifcld 4538 . . . . 5 ((𝜑𝑔𝐷) → if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)) ∈ (Base‘𝑅))
450449fmpttd 7090 . . . 4 (𝜑 → (𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))):𝐷⟶(Base‘𝑅))
451 eldifsnneq 4758 . . . . . . . 8 (𝑔 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑔 = 𝑌)
452451neqcomd 2740 . . . . . . 7 (𝑔 ∈ (𝐷 ∖ {𝑌}) → ¬ 𝑌 = 𝑔)
453452iffalsed 4502 . . . . . 6 (𝑔 ∈ (𝐷 ∖ {𝑌}) → if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)) = (0g𝑅))
454453adantl 481 . . . . 5 ((𝜑𝑔 ∈ (𝐷 ∖ {𝑌})) → if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)) = (0g𝑅))
455454, 256suppss2 8182 . . . 4 (𝜑 → ((𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))) supp (0g𝑅)) ⊆ {𝑌})
456256mptexd 7201 . . . . 5 (𝜑 → (𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))) ∈ V)
457 funmpt 6557 . . . . . 6 Fun (𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)))
458457a1i 11 . . . . 5 (𝜑 → Fun (𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))))
459 snfi 9017 . . . . . . 7 {𝑌} ∈ Fin
460459a1i 11 . . . . . 6 (𝜑 → {𝑌} ∈ Fin)
461460, 455ssfid 9219 . . . . 5 (𝜑 → ((𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))) supp (0g𝑅)) ∈ Fin)
462456, 447, 458, 461isfsuppd 9324 . . . 4 (𝜑 → (𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))) finSupp (0g𝑅))
46368, 286, 445, 256, 450, 455, 462gsumres 19850 . . 3 (𝜑 → (𝑅 Σg ((𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))) ↾ {𝑌})) = (𝑅 Σg (𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)))))
464260snssd 4776 . . . . . 6 (𝜑 → {𝑌} ⊆ 𝐷)
465464resmptd 6014 . . . . 5 (𝜑 → ((𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))) ↾ {𝑌}) = (𝑔 ∈ {𝑌} ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))))
466465oveq2d 7406 . . . 4 (𝜑 → (𝑅 Σg ((𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))) ↾ {𝑌})) = (𝑅 Σg (𝑔 ∈ {𝑌} ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)))))
46769, 260ffvelcdmd 7060 . . . . 5 (𝜑 → (𝐹𝑌) ∈ (Base‘𝑅))
468 iftrue 4497 . . . . . . . 8 (𝑌 = 𝑔 → if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)) = (𝐹𝑔))
469468eqcoms 2738 . . . . . . 7 (𝑔 = 𝑌 → if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)) = (𝐹𝑔))
470 fveq2 6861 . . . . . . 7 (𝑔 = 𝑌 → (𝐹𝑔) = (𝐹𝑌))
471469, 470eqtrd 2765 . . . . . 6 (𝑔 = 𝑌 → if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)) = (𝐹𝑌))
47268, 471gsumsn 19891 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑌𝐷 ∧ (𝐹𝑌) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑔 ∈ {𝑌} ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)))) = (𝐹𝑌))
473253, 260, 467, 472syl3anc 1373 . . . 4 (𝜑 → (𝑅 Σg (𝑔 ∈ {𝑌} ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅)))) = (𝐹𝑌))
474466, 473eqtrd 2765 . . 3 (𝜑 → (𝑅 Σg ((𝑔𝐷 ↦ if(𝑌 = 𝑔, (𝐹𝑔), (0g𝑅))) ↾ {𝑌})) = (𝐹𝑌))
475444, 463, 4743eqtr2d 2771 . 2 (𝜑 → (𝑅 Σg ((𝑣 ∈ (Base‘((𝐼𝐽) mPoly 𝑅)) ↦ (𝑣‘(𝑌 ↾ (𝐼𝐽)))) ∘ ((𝑤 ∈ (Base‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) ↦ (𝑤‘(𝑌𝐽))) ∘ (𝑔𝐷 ↦ (((algSc‘((𝐼𝐽) mPoly 𝑅))‘(𝐹𝑔))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))(((mulGrp‘((𝐼𝐽) mPoly 𝑅)) Σg (𝑘 ∈ (𝐼𝐽) ↦ ((𝑔𝑘)(.g‘(mulGrp‘((𝐼𝐽) mPoly 𝑅)))(((𝐼𝐽) mVar 𝑅)‘𝑘))))( ·𝑠 ‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))((mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))) Σg (𝑘𝐽 ↦ ((𝑔𝑘)(.g‘(mulGrp‘(𝐽 mPoly ((𝐼𝐽) mPoly 𝑅))))((𝐽 mVar ((𝐼𝐽) mPoly 𝑅))‘𝑘)))))))))) = (𝐹𝑌))
476249, 326, 4753eqtrd 2769 1 (𝜑 → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽))) = (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  cres 5643  cima 5644  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  0cc0 11075  cn 12193  0cn0 12449  cz 12536  Basecbs 17186  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668   MndHom cmhm 18715  .gcmg 19006   GrpHom cghm 19151  CMndccmn 19717  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  LModclmod 20773  AssAlgcasa 21766  algSccascl 21768   mVar cmvr 21821   mPoly cmpl 21822   eval cevl 21987   selectVars cslv 22022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-evls 21988  df-evl 21989  df-selv 22026
This theorem is referenced by:  evlselv  42582
  Copyright terms: Public domain W3C validator