![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phpeqd | Structured version Visualization version GIF version |
Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php 9206 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow. (Revised by BTernaryTau, 28-Nov-2024.) |
Ref | Expression |
---|---|
phpeqd.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
phpeqd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
phpeqd.3 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
phpeqd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phpeqd.3 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | phpeqd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
3 | phpeqd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊆ 𝐴) |
5 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
6 | 5 | neqcomd 2742 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴) |
7 | dfpss2 4084 | . . . . . 6 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴)) | |
8 | 4, 6, 7 | sylanbrc 583 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊊ 𝐴) |
9 | php3 9208 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
10 | 2, 8, 9 | syl2an2r 683 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ≺ 𝐴) |
11 | sdomnen 8973 | . . . . 5 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
12 | ensymfib 9183 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | |
13 | 12 | notbid 317 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (¬ 𝐴 ≈ 𝐵 ↔ ¬ 𝐵 ≈ 𝐴)) |
14 | 13 | biimpar 478 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ≈ 𝐴) → ¬ 𝐴 ≈ 𝐵) |
15 | 2, 11, 14 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≺ 𝐴) → ¬ 𝐴 ≈ 𝐵) |
16 | 10, 15 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ≈ 𝐵) |
17 | 16 | ex 413 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵)) |
18 | 1, 17 | mt4d 117 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3947 ⊊ wpss 3948 class class class wbr 5147 ≈ cen 8932 ≺ csdm 8934 Fincfn 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 |
This theorem is referenced by: phphashd 14423 simpgnsgd 19964 |
Copyright terms: Public domain | W3C validator |