MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phpeqd Structured version   Visualization version   GIF version

Theorem phpeqd 9176
Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php 9171 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow 5320. (Revised by BTernaryTau, 28-Nov-2024.)
Hypotheses
Ref Expression
phpeqd.1 (𝜑𝐴 ∈ Fin)
phpeqd.2 (𝜑𝐵𝐴)
phpeqd.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
phpeqd (𝜑𝐴 = 𝐵)

Proof of Theorem phpeqd
StepHypRef Expression
1 phpeqd.3 . 2 (𝜑𝐴𝐵)
2 phpeqd.1 . . . . 5 (𝜑𝐴 ∈ Fin)
3 phpeqd.2 . . . . . . 7 (𝜑𝐵𝐴)
43adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
5 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵)
65neqcomd 2739 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴)
7 dfpss2 4051 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
84, 6, 7sylanbrc 583 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
9 php3 9173 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
102, 8, 9syl2an2r 685 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
11 sdomnen 8952 . . . . 5 (𝐵𝐴 → ¬ 𝐵𝐴)
12 ensymfib 9148 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
1312notbid 318 . . . . . 6 (𝐴 ∈ Fin → (¬ 𝐴𝐵 ↔ ¬ 𝐵𝐴))
1413biimpar 477 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) → ¬ 𝐴𝐵)
152, 11, 14syl2an 596 . . . 4 ((𝜑𝐵𝐴) → ¬ 𝐴𝐵)
1610, 15syldan 591 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵)
1716ex 412 . 2 (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵))
181, 17mt4d 117 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  wpss 3915   class class class wbr 5107  cen 8915  csdm 8917  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922
This theorem is referenced by:  phphashd  14431  simpgnsgd  20032
  Copyright terms: Public domain W3C validator