MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phpeqd Structured version   Visualization version   GIF version

Theorem phpeqd 9072
Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php 9067 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow. (Revised by BTernaryTau, 28-Nov-2024.)
Hypotheses
Ref Expression
phpeqd.1 (𝜑𝐴 ∈ Fin)
phpeqd.2 (𝜑𝐵𝐴)
phpeqd.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
phpeqd (𝜑𝐴 = 𝐵)

Proof of Theorem phpeqd
StepHypRef Expression
1 phpeqd.3 . 2 (𝜑𝐴𝐵)
2 phpeqd.1 . . . . 5 (𝜑𝐴 ∈ Fin)
3 phpeqd.2 . . . . . . 7 (𝜑𝐵𝐴)
43adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
5 simpr 485 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵)
65neqcomd 2746 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴)
7 dfpss2 4031 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
84, 6, 7sylanbrc 583 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
9 php3 9069 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
102, 8, 9syl2an2r 682 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
11 sdomnen 8834 . . . . 5 (𝐵𝐴 → ¬ 𝐵𝐴)
12 ensymfib 9044 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
1312notbid 317 . . . . . 6 (𝐴 ∈ Fin → (¬ 𝐴𝐵 ↔ ¬ 𝐵𝐴))
1413biimpar 478 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) → ¬ 𝐴𝐵)
152, 11, 14syl2an 596 . . . 4 ((𝜑𝐵𝐴) → ¬ 𝐴𝐵)
1610, 15syldan 591 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵)
1716ex 413 . 2 (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵))
181, 17mt4d 117 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wss 3897  wpss 3898   class class class wbr 5089  cen 8793  csdm 8795  Fincfn 8796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-om 7773  df-1o 8359  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800
This theorem is referenced by:  phphashd  14272  simpgnsgd  19790
  Copyright terms: Public domain W3C validator