![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phpeqd | Structured version Visualization version GIF version |
Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php 9235 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow. (Revised by BTernaryTau, 28-Nov-2024.) |
Ref | Expression |
---|---|
phpeqd.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
phpeqd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
phpeqd.3 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
phpeqd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phpeqd.3 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | phpeqd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
3 | phpeqd.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊆ 𝐴) |
5 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
6 | 5 | neqcomd 2738 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴) |
7 | dfpss2 4083 | . . . . . 6 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴)) | |
8 | 4, 6, 7 | sylanbrc 582 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊊ 𝐴) |
9 | php3 9237 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
10 | 2, 8, 9 | syl2an2r 684 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ≺ 𝐴) |
11 | sdomnen 9002 | . . . . 5 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
12 | ensymfib 9212 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | |
13 | 12 | notbid 318 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (¬ 𝐴 ≈ 𝐵 ↔ ¬ 𝐵 ≈ 𝐴)) |
14 | 13 | biimpar 477 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ¬ 𝐵 ≈ 𝐴) → ¬ 𝐴 ≈ 𝐵) |
15 | 2, 11, 14 | syl2an 595 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≺ 𝐴) → ¬ 𝐴 ≈ 𝐵) |
16 | 10, 15 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ≈ 𝐵) |
17 | 16 | ex 412 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵)) |
18 | 1, 17 | mt4d 117 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ⊊ wpss 3948 class class class wbr 5148 ≈ cen 8961 ≺ csdm 8963 Fincfn 8964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-om 7871 df-1o 8487 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 |
This theorem is referenced by: phphashd 14460 simpgnsgd 20057 |
Copyright terms: Public domain | W3C validator |