MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phpeqd Structured version   Visualization version   GIF version

Theorem phpeqd 9214
Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php 9209 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow. (Revised by BTernaryTau, 28-Nov-2024.)
Hypotheses
Ref Expression
phpeqd.1 (𝜑𝐴 ∈ Fin)
phpeqd.2 (𝜑𝐵𝐴)
phpeqd.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
phpeqd (𝜑𝐴 = 𝐵)

Proof of Theorem phpeqd
StepHypRef Expression
1 phpeqd.3 . 2 (𝜑𝐴𝐵)
2 phpeqd.1 . . . . 5 (𝜑𝐴 ∈ Fin)
3 phpeqd.2 . . . . . . 7 (𝜑𝐵𝐴)
43adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
5 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵)
65neqcomd 2736 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴)
7 dfpss2 4080 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵 = 𝐴))
84, 6, 7sylanbrc 582 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
9 php3 9211 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
102, 8, 9syl2an2r 682 . . . 4 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵𝐴)
11 sdomnen 8976 . . . . 5 (𝐵𝐴 → ¬ 𝐵𝐴)
12 ensymfib 9186 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐵𝐵𝐴))
1312notbid 318 . . . . . 6 (𝐴 ∈ Fin → (¬ 𝐴𝐵 ↔ ¬ 𝐵𝐴))
1413biimpar 477 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴) → ¬ 𝐴𝐵)
152, 11, 14syl2an 595 . . . 4 ((𝜑𝐵𝐴) → ¬ 𝐴𝐵)
1610, 15syldan 590 . . 3 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴𝐵)
1716ex 412 . 2 (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝐴𝐵))
181, 17mt4d 117 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  wss 3943  wpss 3944   class class class wbr 5141  cen 8935  csdm 8937  Fincfn 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7852  df-1o 8464  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942
This theorem is referenced by:  phphashd  14431  simpgnsgd  20020
  Copyright terms: Public domain W3C validator