| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnibr 329 neqcomd 2745 ssnelpss 4089 fr3nr 7766 omopthi 8673 cofonr 8686 inf3lem6 9647 rankxpsuc 9896 cflim2 10277 ssfin4 10324 fin23lem30 10356 isf32lem5 10371 gchhar 10693 qextlt 13219 qextle 13220 fzneuz 13625 vdwnn 17018 psgnunilem3 19477 efgredlemb 19727 gsumzsplit 19908 lspexchn2 21092 lspindp2l 21095 lspindp2 21096 psrlidm 21922 mplcoe1 21995 mplcoe5 21998 ptopn2 23522 regr1lem2 23678 rnelfmlem 23890 hauspwpwf1 23925 tsmssplit 24090 reconn 24768 itg2splitlem 25701 itg2split 25702 itg2cn 25716 wilthlem2 27031 bposlem9 27255 2sqcoprm 27398 elntg2 28964 nfrgr2v 30253 hatomistici 32343 nn0min 32799 ccatws1f1o 32927 fedgmullem2 33670 qqhf 34017 hasheuni 34116 oddpwdc 34386 ballotlemimin 34538 ballotlemfrcn0 34562 bnj1388 35064 prv1n 35453 efrunt 35730 dfon2lem4 35804 dfon2lem7 35807 nandsym1 36440 atbase 39307 llnbase 39528 lplnbase 39553 lvolbase 39597 dalem48 39739 lhpbase 40017 cdlemg17pq 40691 cdlemg19 40703 cdlemg21 40705 dvh3dim3N 41468 fimgmcyc 42557 rmspecnonsq 42930 setindtr 43048 flcidc 43194 omssrncard 43564 scotteld 44270 fmul01lt1lem2 45614 icccncfext 45916 stoweidlem14 46043 stoweidlem26 46055 stirlinglem5 46107 fourierdlem42 46178 fourierdlem62 46197 fourierdlem66 46201 hoicvr 46577 |
| Copyright terms: Public domain | W3C validator |