Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sylnibr 329 neqcomd 2748 ssnelpss 4046 fr3nr 7622 omopthi 8491 inf3lem6 9391 rankxpsuc 9640 cflim2 10019 ssfin4 10066 fin23lem30 10098 isf32lem5 10113 gchhar 10435 qextlt 12937 qextle 12938 fzneuz 13337 vdwnn 16699 psgnunilem3 19104 efgredlemb 19352 gsumzsplit 19528 lspexchn2 20393 lspindp2l 20396 lspindp2 20397 psrlidm 21172 mplcoe1 21238 mplcoe5 21241 ptopn2 22735 regr1lem2 22891 rnelfmlem 23103 hauspwpwf1 23138 tsmssplit 23303 reconn 23991 itg2splitlem 24913 itg2split 24914 itg2cn 24928 wilthlem2 26218 bposlem9 26440 2sqcoprm 26583 elntg2 27353 nfrgr2v 28636 hatomistici 30724 nn0min 31134 fedgmullem2 31711 qqhf 31936 hasheuni 32053 oddpwdc 32321 ballotlemimin 32472 ballotlemfrcn0 32496 bnj1388 33013 prv1n 33393 efrunt 33654 dfon2lem4 33762 dfon2lem7 33765 nandsym1 34611 atbase 37303 llnbase 37523 lplnbase 37548 lvolbase 37592 dalem48 37734 lhpbase 38012 cdlemg17pq 38686 cdlemg19 38698 cdlemg21 38700 dvh3dim3N 39463 rmspecnonsq 40729 setindtr 40846 flcidc 40999 omssrncard 41147 scotteld 41864 fmul01lt1lem2 43126 icccncfext 43428 stoweidlem14 43555 stoweidlem26 43567 stirlinglem5 43619 fourierdlem42 43690 fourierdlem62 43709 fourierdlem66 43713 hoicvr 44086 |
Copyright terms: Public domain | W3C validator |