Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sylnibr 329 neqcomd 2750 ssnelpss 4051 fr3nr 7616 omopthi 8474 inf3lem6 9369 rankxpsuc 9641 cflim2 10020 ssfin4 10067 fin23lem30 10099 isf32lem5 10114 gchhar 10436 qextlt 12936 qextle 12937 fzneuz 13336 vdwnn 16697 psgnunilem3 19102 efgredlemb 19350 gsumzsplit 19526 lspexchn2 20391 lspindp2l 20394 lspindp2 20395 psrlidm 21170 mplcoe1 21236 mplcoe5 21239 ptopn2 22733 regr1lem2 22889 rnelfmlem 23101 hauspwpwf1 23136 tsmssplit 23301 reconn 23989 itg2splitlem 24911 itg2split 24912 itg2cn 24926 wilthlem2 26216 bposlem9 26438 2sqcoprm 26581 elntg2 27351 nfrgr2v 28632 hatomistici 30720 nn0min 31130 fedgmullem2 31707 qqhf 31932 hasheuni 32049 oddpwdc 32317 ballotlemimin 32468 ballotlemfrcn0 32492 bnj1388 33009 prv1n 33389 efrunt 33650 dfon2lem4 33758 dfon2lem7 33761 nandsym1 34607 atbase 37299 llnbase 37519 lplnbase 37544 lvolbase 37588 dalem48 37730 lhpbase 38008 cdlemg17pq 38682 cdlemg19 38694 cdlemg21 38696 dvh3dim3N 39459 rmspecnonsq 40726 setindtr 40843 flcidc 40996 scotteld 41834 fmul01lt1lem2 43097 icccncfext 43399 stoweidlem14 43526 stoweidlem26 43538 stirlinglem5 43590 fourierdlem42 43661 fourierdlem62 43680 fourierdlem66 43684 hoicvr 44057 |
Copyright terms: Public domain | W3C validator |