![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sylnibr 329 neqcomd 2743 ssnelpss 4112 fr3nr 7759 omopthi 8660 cofonr 8673 inf3lem6 9628 rankxpsuc 9877 cflim2 10258 ssfin4 10305 fin23lem30 10337 isf32lem5 10352 gchhar 10674 qextlt 13182 qextle 13183 fzneuz 13582 vdwnn 16931 psgnunilem3 19364 efgredlemb 19614 gsumzsplit 19795 lspexchn2 20744 lspindp2l 20747 lspindp2 20748 psrlidm 21523 mplcoe1 21592 mplcoe5 21595 ptopn2 23088 regr1lem2 23244 rnelfmlem 23456 hauspwpwf1 23491 tsmssplit 23656 reconn 24344 itg2splitlem 25266 itg2split 25267 itg2cn 25281 wilthlem2 26573 bposlem9 26795 2sqcoprm 26938 elntg2 28243 nfrgr2v 29525 hatomistici 31615 nn0min 32026 fedgmullem2 32715 qqhf 32966 hasheuni 33083 oddpwdc 33353 ballotlemimin 33504 ballotlemfrcn0 33528 bnj1388 34044 prv1n 34422 efrunt 34682 dfon2lem4 34758 dfon2lem7 34761 nandsym1 35307 atbase 38159 llnbase 38380 lplnbase 38405 lvolbase 38449 dalem48 38591 lhpbase 38869 cdlemg17pq 39543 cdlemg19 39555 cdlemg21 39557 dvh3dim3N 40320 rmspecnonsq 41645 setindtr 41763 flcidc 41916 omssrncard 42291 scotteld 43005 fmul01lt1lem2 44301 icccncfext 44603 stoweidlem14 44730 stoweidlem26 44742 stirlinglem5 44794 fourierdlem42 44865 fourierdlem62 44884 fourierdlem66 44888 hoicvr 45264 |
Copyright terms: Public domain | W3C validator |