![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sylnibr 329 neqcomd 2743 ssnelpss 4112 fr3nr 7759 omopthi 8660 cofonr 8673 inf3lem6 9628 rankxpsuc 9877 cflim2 10258 ssfin4 10305 fin23lem30 10337 isf32lem5 10352 gchhar 10674 qextlt 13182 qextle 13183 fzneuz 13582 vdwnn 16931 psgnunilem3 19364 efgredlemb 19614 gsumzsplit 19795 lspexchn2 20744 lspindp2l 20747 lspindp2 20748 psrlidm 21523 mplcoe1 21592 mplcoe5 21595 ptopn2 23088 regr1lem2 23244 rnelfmlem 23456 hauspwpwf1 23491 tsmssplit 23656 reconn 24344 itg2splitlem 25266 itg2split 25267 itg2cn 25281 wilthlem2 26573 bposlem9 26795 2sqcoprm 26938 elntg2 28274 nfrgr2v 29556 hatomistici 31646 nn0min 32057 fedgmullem2 32746 qqhf 32997 hasheuni 33114 oddpwdc 33384 ballotlemimin 33535 ballotlemfrcn0 33559 bnj1388 34075 prv1n 34453 efrunt 34713 dfon2lem4 34789 dfon2lem7 34792 nandsym1 35355 atbase 38207 llnbase 38428 lplnbase 38453 lvolbase 38497 dalem48 38639 lhpbase 38917 cdlemg17pq 39591 cdlemg19 39603 cdlemg21 39605 dvh3dim3N 40368 rmspecnonsq 41693 setindtr 41811 flcidc 41964 omssrncard 42339 scotteld 43053 fmul01lt1lem2 44349 icccncfext 44651 stoweidlem14 44778 stoweidlem26 44790 stirlinglem5 44842 fourierdlem42 44913 fourierdlem62 44932 fourierdlem66 44936 hoicvr 45312 |
Copyright terms: Public domain | W3C validator |