| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnibr 329 neqcomd 2739 ssnelpss 4067 fr3nr 7712 omopthi 8586 cofonr 8599 inf3lem6 9548 rankxpsuc 9797 cflim2 10176 ssfin4 10223 fin23lem30 10255 isf32lem5 10270 gchhar 10592 qextlt 13123 qextle 13124 fzneuz 13529 vdwnn 16928 psgnunilem3 19393 efgredlemb 19643 gsumzsplit 19824 lspexchn2 21056 lspindp2l 21059 lspindp2 21060 psrlidm 21887 mplcoe1 21960 mplcoe5 21963 ptopn2 23487 regr1lem2 23643 rnelfmlem 23855 hauspwpwf1 23890 tsmssplit 24055 reconn 24733 itg2splitlem 25665 itg2split 25666 itg2cn 25680 wilthlem2 26995 bposlem9 27219 2sqcoprm 27362 elntg2 28948 nfrgr2v 30234 hatomistici 32324 nn0min 32778 ccatws1f1o 32906 fedgmullem2 33602 qqhf 33952 hasheuni 34051 oddpwdc 34321 ballotlemimin 34473 ballotlemfrcn0 34497 bnj1388 34999 prv1n 35403 efrunt 35685 dfon2lem4 35759 dfon2lem7 35762 nandsym1 36395 atbase 39267 llnbase 39488 lplnbase 39513 lvolbase 39557 dalem48 39699 lhpbase 39977 cdlemg17pq 40651 cdlemg19 40663 cdlemg21 40665 dvh3dim3N 41428 fimgmcyc 42507 rmspecnonsq 42880 setindtr 42997 flcidc 43143 omssrncard 43513 scotteld 44219 fmul01lt1lem2 45567 icccncfext 45869 stoweidlem14 45996 stoweidlem26 46008 stirlinglem5 46060 fourierdlem42 46131 fourierdlem62 46150 fourierdlem66 46154 hoicvr 46530 |
| Copyright terms: Public domain | W3C validator |