Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpri 227 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: sylnibr 328 neqcomd 2748 ssnelpss 4042 fr3nr 7600 omopthi 8451 inf3lem6 9321 rankxpsuc 9571 cflim2 9950 ssfin4 9997 fin23lem30 10029 isf32lem5 10044 gchhar 10366 qextlt 12866 qextle 12867 fzneuz 13266 vdwnn 16627 psgnunilem3 19019 efgredlemb 19267 gsumzsplit 19443 lspexchn2 20308 lspindp2l 20311 lspindp2 20312 psrlidm 21082 mplcoe1 21148 mplcoe5 21151 ptopn2 22643 regr1lem2 22799 rnelfmlem 23011 hauspwpwf1 23046 tsmssplit 23211 reconn 23897 itg2splitlem 24818 itg2split 24819 itg2cn 24833 wilthlem2 26123 bposlem9 26345 2sqcoprm 26488 elntg2 27256 nfrgr2v 28537 hatomistici 30625 nn0min 31036 fedgmullem2 31613 qqhf 31836 hasheuni 31953 oddpwdc 32221 ballotlemimin 32372 ballotlemfrcn0 32396 bnj1388 32913 prv1n 33293 efrunt 33554 dfon2lem4 33668 dfon2lem7 33671 nandsym1 34538 atbase 37230 llnbase 37450 lplnbase 37475 lvolbase 37519 dalem48 37661 lhpbase 37939 cdlemg17pq 38613 cdlemg19 38625 cdlemg21 38627 dvh3dim3N 39390 rmspecnonsq 40645 setindtr 40762 flcidc 40915 scotteld 41753 fmul01lt1lem2 43016 icccncfext 43318 stoweidlem14 43445 stoweidlem26 43457 stirlinglem5 43509 fourierdlem42 43580 fourierdlem62 43599 fourierdlem66 43603 hoicvr 43976 |
Copyright terms: Public domain | W3C validator |