![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: sylnibr 329 neqcomd 2745 ssnelpss 4124 fr3nr 7791 omopthi 8698 cofonr 8711 inf3lem6 9671 rankxpsuc 9920 cflim2 10301 ssfin4 10348 fin23lem30 10380 isf32lem5 10395 gchhar 10717 qextlt 13242 qextle 13243 fzneuz 13645 vdwnn 17032 psgnunilem3 19529 efgredlemb 19779 gsumzsplit 19960 lspexchn2 21151 lspindp2l 21154 lspindp2 21155 psrlidm 22000 mplcoe1 22073 mplcoe5 22076 ptopn2 23608 regr1lem2 23764 rnelfmlem 23976 hauspwpwf1 24011 tsmssplit 24176 reconn 24864 itg2splitlem 25798 itg2split 25799 itg2cn 25813 wilthlem2 27127 bposlem9 27351 2sqcoprm 27494 elntg2 29015 nfrgr2v 30301 hatomistici 32391 nn0min 32827 ccatws1f1o 32921 fedgmullem2 33658 qqhf 33949 hasheuni 34066 oddpwdc 34336 ballotlemimin 34487 ballotlemfrcn0 34511 bnj1388 35026 prv1n 35416 efrunt 35693 dfon2lem4 35768 dfon2lem7 35771 nandsym1 36405 atbase 39271 llnbase 39492 lplnbase 39517 lvolbase 39561 dalem48 39703 lhpbase 39981 cdlemg17pq 40655 cdlemg19 40667 cdlemg21 40669 dvh3dim3N 41432 fimgmcyc 42521 rmspecnonsq 42895 setindtr 43013 flcidc 43159 omssrncard 43530 scotteld 44242 fmul01lt1lem2 45541 icccncfext 45843 stoweidlem14 45970 stoweidlem26 45982 stirlinglem5 46034 fourierdlem42 46105 fourierdlem62 46124 fourierdlem66 46128 hoicvr 46504 |
Copyright terms: Public domain | W3C validator |