| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnibr 329 neqcomd 2743 ssnelpss 4063 fr3nr 7711 omopthi 8582 cofonr 8595 inf3lem6 9530 rankxpsuc 9782 cflim2 10161 ssfin4 10208 fin23lem30 10240 isf32lem5 10255 gchhar 10577 qextlt 13104 qextle 13105 fzneuz 13510 vdwnn 16912 psgnunilem3 19410 efgredlemb 19660 gsumzsplit 19841 lspexchn2 21070 lspindp2l 21073 lspindp2 21074 psrlidm 21900 mplcoe1 21973 mplcoe5 21976 ptopn2 23500 regr1lem2 23656 rnelfmlem 23868 hauspwpwf1 23903 tsmssplit 24068 reconn 24745 itg2splitlem 25677 itg2split 25678 itg2cn 25692 wilthlem2 27007 bposlem9 27231 2sqcoprm 27374 elntg2 28965 nfrgr2v 30254 hatomistici 32344 nn0min 32808 ccatws1f1o 32939 fedgmullem2 33664 qqhf 34020 hasheuni 34119 oddpwdc 34388 ballotlemimin 34540 ballotlemfrcn0 34564 bnj1388 35066 prv1n 35496 efrunt 35778 dfon2lem4 35849 dfon2lem7 35852 nandsym1 36487 atbase 39408 llnbase 39628 lplnbase 39653 lvolbase 39697 dalem48 39839 lhpbase 40117 cdlemg17pq 40791 cdlemg19 40803 cdlemg21 40805 dvh3dim3N 41568 fimgmcyc 42652 rmspecnonsq 43024 setindtr 43141 flcidc 43287 omssrncard 43657 scotteld 44363 fmul01lt1lem2 45709 icccncfext 46009 stoweidlem14 46136 stoweidlem26 46148 stirlinglem5 46200 fourierdlem42 46271 fourierdlem62 46290 fourierdlem66 46294 hoicvr 46670 chnsubseq 47002 |
| Copyright terms: Public domain | W3C validator |