![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylnib | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: sylnibr 329 neqcomd 2750 ssnelpss 4137 fr3nr 7807 omopthi 8717 cofonr 8730 inf3lem6 9702 rankxpsuc 9951 cflim2 10332 ssfin4 10379 fin23lem30 10411 isf32lem5 10426 gchhar 10748 qextlt 13265 qextle 13266 fzneuz 13665 vdwnn 17045 psgnunilem3 19538 efgredlemb 19788 gsumzsplit 19969 lspexchn2 21156 lspindp2l 21159 lspindp2 21160 psrlidm 22005 mplcoe1 22078 mplcoe5 22081 ptopn2 23613 regr1lem2 23769 rnelfmlem 23981 hauspwpwf1 24016 tsmssplit 24181 reconn 24869 itg2splitlem 25803 itg2split 25804 itg2cn 25818 wilthlem2 27130 bposlem9 27354 2sqcoprm 27497 elntg2 29018 nfrgr2v 30304 hatomistici 32394 nn0min 32824 ccatws1f1o 32918 fedgmullem2 33643 qqhf 33932 hasheuni 34049 oddpwdc 34319 ballotlemimin 34470 ballotlemfrcn0 34494 bnj1388 35009 prv1n 35399 efrunt 35675 dfon2lem4 35750 dfon2lem7 35753 nandsym1 36388 atbase 39245 llnbase 39466 lplnbase 39491 lvolbase 39535 dalem48 39677 lhpbase 39955 cdlemg17pq 40629 cdlemg19 40641 cdlemg21 40643 dvh3dim3N 41406 fimgmcyc 42489 rmspecnonsq 42863 setindtr 42981 flcidc 43131 omssrncard 43502 scotteld 44215 fmul01lt1lem2 45506 icccncfext 45808 stoweidlem14 45935 stoweidlem26 45947 stirlinglem5 45999 fourierdlem42 46070 fourierdlem62 46089 fourierdlem66 46093 hoicvr 46469 |
Copyright terms: Public domain | W3C validator |