| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnibr 329 neqcomd 2741 ssnelpss 4064 fr3nr 7705 omopthi 8576 cofonr 8589 inf3lem6 9523 rankxpsuc 9772 cflim2 10151 ssfin4 10198 fin23lem30 10230 isf32lem5 10245 gchhar 10567 qextlt 13099 qextle 13100 fzneuz 13505 vdwnn 16907 psgnunilem3 19406 efgredlemb 19656 gsumzsplit 19837 lspexchn2 21066 lspindp2l 21069 lspindp2 21070 psrlidm 21897 mplcoe1 21970 mplcoe5 21973 ptopn2 23497 regr1lem2 23653 rnelfmlem 23865 hauspwpwf1 23900 tsmssplit 24065 reconn 24742 itg2splitlem 25674 itg2split 25675 itg2cn 25689 wilthlem2 27004 bposlem9 27228 2sqcoprm 27371 elntg2 28961 nfrgr2v 30247 hatomistici 32337 nn0min 32798 ccatws1f1o 32927 fedgmullem2 33638 qqhf 33994 hasheuni 34093 oddpwdc 34362 ballotlemimin 34514 ballotlemfrcn0 34538 bnj1388 35040 prv1n 35463 efrunt 35745 dfon2lem4 35819 dfon2lem7 35822 nandsym1 36455 atbase 39327 llnbase 39547 lplnbase 39572 lvolbase 39616 dalem48 39758 lhpbase 40036 cdlemg17pq 40710 cdlemg19 40722 cdlemg21 40724 dvh3dim3N 41487 fimgmcyc 42566 rmspecnonsq 42939 setindtr 43056 flcidc 43202 omssrncard 43572 scotteld 44278 fmul01lt1lem2 45624 icccncfext 45924 stoweidlem14 46051 stoweidlem26 46063 stirlinglem5 46115 fourierdlem42 46186 fourierdlem62 46205 fourierdlem66 46209 hoicvr 46585 |
| Copyright terms: Public domain | W3C validator |