| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnibr 329 neqcomd 2739 ssnelpss 4077 fr3nr 7748 omopthi 8625 cofonr 8638 inf3lem6 9586 rankxpsuc 9835 cflim2 10216 ssfin4 10263 fin23lem30 10295 isf32lem5 10310 gchhar 10632 qextlt 13163 qextle 13164 fzneuz 13569 vdwnn 16969 psgnunilem3 19426 efgredlemb 19676 gsumzsplit 19857 lspexchn2 21041 lspindp2l 21044 lspindp2 21045 psrlidm 21871 mplcoe1 21944 mplcoe5 21947 ptopn2 23471 regr1lem2 23627 rnelfmlem 23839 hauspwpwf1 23874 tsmssplit 24039 reconn 24717 itg2splitlem 25649 itg2split 25650 itg2cn 25664 wilthlem2 26979 bposlem9 27203 2sqcoprm 27346 elntg2 28912 nfrgr2v 30201 hatomistici 32291 nn0min 32745 ccatws1f1o 32873 fedgmullem2 33626 qqhf 33976 hasheuni 34075 oddpwdc 34345 ballotlemimin 34497 ballotlemfrcn0 34521 bnj1388 35023 prv1n 35418 efrunt 35700 dfon2lem4 35774 dfon2lem7 35777 nandsym1 36410 atbase 39282 llnbase 39503 lplnbase 39528 lvolbase 39572 dalem48 39714 lhpbase 39992 cdlemg17pq 40666 cdlemg19 40678 cdlemg21 40680 dvh3dim3N 41443 fimgmcyc 42522 rmspecnonsq 42895 setindtr 43013 flcidc 43159 omssrncard 43529 scotteld 44235 fmul01lt1lem2 45583 icccncfext 45885 stoweidlem14 46012 stoweidlem26 46024 stirlinglem5 46076 fourierdlem42 46147 fourierdlem62 46166 fourierdlem66 46170 hoicvr 46546 |
| Copyright terms: Public domain | W3C validator |