| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylnib | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| sylnib.1 | ⊢ (𝜑 → ¬ 𝜓) |
| sylnib.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylnib | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnib.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | sylnib.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (𝜒 → 𝜓) |
| 4 | 1, 3 | nsyl 140 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: sylnibr 329 neqcomd 2740 ssnelpss 4080 fr3nr 7751 omopthi 8628 cofonr 8641 inf3lem6 9593 rankxpsuc 9842 cflim2 10223 ssfin4 10270 fin23lem30 10302 isf32lem5 10317 gchhar 10639 qextlt 13170 qextle 13171 fzneuz 13576 vdwnn 16976 psgnunilem3 19433 efgredlemb 19683 gsumzsplit 19864 lspexchn2 21048 lspindp2l 21051 lspindp2 21052 psrlidm 21878 mplcoe1 21951 mplcoe5 21954 ptopn2 23478 regr1lem2 23634 rnelfmlem 23846 hauspwpwf1 23881 tsmssplit 24046 reconn 24724 itg2splitlem 25656 itg2split 25657 itg2cn 25671 wilthlem2 26986 bposlem9 27210 2sqcoprm 27353 elntg2 28919 nfrgr2v 30208 hatomistici 32298 nn0min 32752 ccatws1f1o 32880 fedgmullem2 33633 qqhf 33983 hasheuni 34082 oddpwdc 34352 ballotlemimin 34504 ballotlemfrcn0 34528 bnj1388 35030 prv1n 35425 efrunt 35707 dfon2lem4 35781 dfon2lem7 35784 nandsym1 36417 atbase 39289 llnbase 39510 lplnbase 39535 lvolbase 39579 dalem48 39721 lhpbase 39999 cdlemg17pq 40673 cdlemg19 40685 cdlemg21 40687 dvh3dim3N 41450 fimgmcyc 42529 rmspecnonsq 42902 setindtr 43020 flcidc 43166 omssrncard 43536 scotteld 44242 fmul01lt1lem2 45590 icccncfext 45892 stoweidlem14 46019 stoweidlem26 46031 stirlinglem5 46083 fourierdlem42 46154 fourierdlem62 46173 fourierdlem66 46177 hoicvr 46553 |
| Copyright terms: Public domain | W3C validator |