Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p8d2 Structured version   Visualization version   GIF version

Theorem aks4d1p8d2 40093
Description: Any prime power dividing a positive integer is less than that integer if that integer has another prime factor. (Contributed by metakunt, 13-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p8d2.1 (𝜑𝑅 ∈ ℕ)
aks4d1p8d2.2 (𝜑𝑁 ∈ ℕ)
aks4d1p8d2.3 (𝜑𝑃 ∈ ℙ)
aks4d1p8d2.4 (𝜑𝑄 ∈ ℙ)
aks4d1p8d2.5 (𝜑𝑃𝑅)
aks4d1p8d2.6 (𝜑𝑄𝑅)
aks4d1p8d2.7 (𝜑 → ¬ 𝑃𝑁)
aks4d1p8d2.8 (𝜑𝑄𝑁)
Assertion
Ref Expression
aks4d1p8d2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅)

Proof of Theorem aks4d1p8d2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 aks4d1p8d2.3 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 prmnn 16379 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
43nnred 11988 . . 3 (𝜑𝑃 ∈ ℝ)
5 aks4d1p8d2.1 . . . 4 (𝜑𝑅 ∈ ℕ)
61, 5pccld 16551 . . 3 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ0)
74, 6reexpcld 13881 . 2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℝ)
8 aks4d1p8d2.4 . . . . 5 (𝜑𝑄 ∈ ℙ)
9 prmnn 16379 . . . . 5 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
108, 9syl 17 . . . 4 (𝜑𝑄 ∈ ℕ)
1110nnred 11988 . . 3 (𝜑𝑄 ∈ ℝ)
127, 11remulcld 11005 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℝ)
135nnred 11988 . 2 (𝜑𝑅 ∈ ℝ)
147recnd 11003 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℂ)
1514mulid1d 10992 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) = (𝑃↑(𝑃 pCnt 𝑅)))
16 1red 10976 . . . 4 (𝜑 → 1 ∈ ℝ)
173nnrpd 12770 . . . . 5 (𝜑𝑃 ∈ ℝ+)
186nn0zd 12424 . . . . 5 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℤ)
1917, 18rpexpcld 13962 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℝ+)
20 prmgt1 16402 . . . . 5 (𝑄 ∈ ℙ → 1 < 𝑄)
218, 20syl 17 . . . 4 (𝜑 → 1 < 𝑄)
2216, 11, 19, 21ltmul2dd 12828 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄))
2315, 22eqbrtrrd 5098 . 2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄))
243nnzd 12425 . . . . 5 (𝜑𝑃 ∈ ℤ)
2524, 6zexpcld 13808 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ)
2610nnzd 12425 . . . 4 (𝜑𝑄 ∈ ℤ)
275nnzd 12425 . . . 4 (𝜑𝑅 ∈ ℤ)
2825, 26gcdcomd 16221 . . . . 5 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))))
29 0lt1 11497 . . . . . . . . . . . . . 14 0 < 1
3029a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
31 0red 10978 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
3231, 16ltnled 11122 . . . . . . . . . . . . 13 (𝜑 → (0 < 1 ↔ ¬ 1 ≤ 0))
3330, 32mpbid 231 . . . . . . . . . . . 12 (𝜑 → ¬ 1 ≤ 0)
3411recnd 11003 . . . . . . . . . . . . . . . . . 18 (𝜑𝑄 ∈ ℂ)
3534exp1d 13859 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄↑1) = 𝑄)
3635eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝜑𝑄 = (𝑄↑1))
3736oveq2d 7291 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 pCnt 𝑄) = (𝑄 pCnt (𝑄↑1)))
38 1zzd 12351 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℤ)
39 pcid 16574 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑄 pCnt (𝑄↑1)) = 1)
408, 38, 39syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 pCnt (𝑄↑1)) = 1)
4137, 40eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 pCnt 𝑄) = 1)
42 aks4d1p8d2.8 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄𝑁)
4342adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑃 = 𝑄) → 𝑄𝑁)
44 breq1 5077 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 = 𝑄 → (𝑃𝑁𝑄𝑁))
4544adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑃 = 𝑄) → (𝑃𝑁𝑄𝑁))
4645bicomd 222 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑃 = 𝑄) → (𝑄𝑁𝑃𝑁))
4746biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑃 = 𝑄) → (𝑄𝑁𝑃𝑁))
4843, 47mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑃 = 𝑄) → 𝑃𝑁)
49 aks4d1p8d2.7 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝑃𝑁)
5049adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑃 = 𝑄) → ¬ 𝑃𝑁)
5148, 50pm2.65da 814 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑃 = 𝑄)
5251neqcomd 2748 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑄 = 𝑃)
53 aks4d1p8d2.5 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃𝑅)
54 pcelnn 16571 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃𝑅))
551, 5, 54syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃𝑅))
5653, 55mpbird 256 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ)
57 prmdvdsexpb 16421 . . . . . . . . . . . . . . . . . 18 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝑅) ∈ ℕ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃))
588, 1, 56, 57syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃))
5958notbid 318 . . . . . . . . . . . . . . . 16 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ 𝑄 = 𝑃))
6052, 59mpbird 256 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))
613, 6nnexpcld 13960 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ)
62 pceq0 16572 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ) → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))))
638, 61, 62syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))))
6460, 63mpbird 256 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0)
6541, 64breq12d 5087 . . . . . . . . . . . . 13 (𝜑 → ((𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ 1 ≤ 0))
6665notbid 318 . . . . . . . . . . . 12 (𝜑 → (¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ 1 ≤ 0))
6733, 66mpbird 256 . . . . . . . . . . 11 (𝜑 → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
6867adantr 481 . . . . . . . . . 10 ((𝜑𝑝 = 𝑄) → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
69 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑝 = 𝑄) → 𝑝 = 𝑄)
7069oveq1d 7290 . . . . . . . . . . . 12 ((𝜑𝑝 = 𝑄) → (𝑝 pCnt 𝑄) = (𝑄 pCnt 𝑄))
7169oveq1d 7290 . . . . . . . . . . . 12 ((𝜑𝑝 = 𝑄) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7270, 71breq12d 5087 . . . . . . . . . . 11 ((𝜑𝑝 = 𝑄) → ((𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7372notbid 318 . . . . . . . . . 10 ((𝜑𝑝 = 𝑄) → (¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7468, 73mpbird 256 . . . . . . . . 9 ((𝜑𝑝 = 𝑄) → ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7574, 8rspcime 3564 . . . . . . . 8 (𝜑 → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
76 rexnal 3169 . . . . . . . . 9 (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7776a1i 11 . . . . . . . 8 (𝜑 → (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7875, 77mpbid 231 . . . . . . 7 (𝜑 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
79 pc2dvds 16580 . . . . . . . . 9 ((𝑄 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8026, 25, 79syl2anc 584 . . . . . . . 8 (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8180notbid 318 . . . . . . 7 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8278, 81mpbird 256 . . . . . 6 (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))
83 coprm 16416 . . . . . . 7 ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1))
848, 25, 83syl2anc 584 . . . . . 6 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1))
8582, 84mpbid 231 . . . . 5 (𝜑 → (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1)
8628, 85eqtrd 2778 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = 1)
87 pcdvds 16565 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
881, 5, 87syl2anc 584 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
89 aks4d1p8d2.6 . . . 4 (𝜑𝑄𝑅)
9025, 26, 27, 86, 88, 89coprmdvds2d 40010 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅)
9125, 26zmulcld 12432 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ)
92 dvdsle 16019 . . . 4 ((((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ ∧ 𝑅 ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅))
9391, 5, 92syl2anc 584 . . 3 (𝜑 → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅))
9490, 93mpd 15 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅)
957, 12, 13, 23, 94ltletrd 11135 1 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  (class class class)co 7275  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cn 11973  cz 12319  cexp 13782  cdvds 15963   gcd cgcd 16201  cprime 16376   pCnt cpc 16537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538
This theorem is referenced by:  aks4d1p8  40095
  Copyright terms: Public domain W3C validator