Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p8d2 Structured version   Visualization version   GIF version

Theorem aks4d1p8d2 40021
Description: Any prime power dividing a positive integer is less than that integer if that integer has another prime factor. (Contributed by metakunt, 13-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p8d2.1 (𝜑𝑅 ∈ ℕ)
aks4d1p8d2.2 (𝜑𝑁 ∈ ℕ)
aks4d1p8d2.3 (𝜑𝑃 ∈ ℙ)
aks4d1p8d2.4 (𝜑𝑄 ∈ ℙ)
aks4d1p8d2.5 (𝜑𝑃𝑅)
aks4d1p8d2.6 (𝜑𝑄𝑅)
aks4d1p8d2.7 (𝜑 → ¬ 𝑃𝑁)
aks4d1p8d2.8 (𝜑𝑄𝑁)
Assertion
Ref Expression
aks4d1p8d2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅)

Proof of Theorem aks4d1p8d2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 aks4d1p8d2.3 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 prmnn 16307 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
43nnred 11918 . . 3 (𝜑𝑃 ∈ ℝ)
5 aks4d1p8d2.1 . . . 4 (𝜑𝑅 ∈ ℕ)
61, 5pccld 16479 . . 3 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ0)
74, 6reexpcld 13809 . 2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℝ)
8 aks4d1p8d2.4 . . . . 5 (𝜑𝑄 ∈ ℙ)
9 prmnn 16307 . . . . 5 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
108, 9syl 17 . . . 4 (𝜑𝑄 ∈ ℕ)
1110nnred 11918 . . 3 (𝜑𝑄 ∈ ℝ)
127, 11remulcld 10936 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℝ)
135nnred 11918 . 2 (𝜑𝑅 ∈ ℝ)
147recnd 10934 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℂ)
1514mulid1d 10923 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) = (𝑃↑(𝑃 pCnt 𝑅)))
16 1red 10907 . . . 4 (𝜑 → 1 ∈ ℝ)
173nnrpd 12699 . . . . 5 (𝜑𝑃 ∈ ℝ+)
186nn0zd 12353 . . . . 5 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℤ)
1917, 18rpexpcld 13890 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℝ+)
20 prmgt1 16330 . . . . 5 (𝑄 ∈ ℙ → 1 < 𝑄)
218, 20syl 17 . . . 4 (𝜑 → 1 < 𝑄)
2216, 11, 19, 21ltmul2dd 12757 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄))
2315, 22eqbrtrrd 5094 . 2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄))
243nnzd 12354 . . . . 5 (𝜑𝑃 ∈ ℤ)
2524, 6zexpcld 13736 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ)
2610nnzd 12354 . . . 4 (𝜑𝑄 ∈ ℤ)
275nnzd 12354 . . . 4 (𝜑𝑅 ∈ ℤ)
2825, 26gcdcomd 16149 . . . . 5 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))))
29 0lt1 11427 . . . . . . . . . . . . . 14 0 < 1
3029a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
31 0red 10909 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
3231, 16ltnled 11052 . . . . . . . . . . . . 13 (𝜑 → (0 < 1 ↔ ¬ 1 ≤ 0))
3330, 32mpbid 231 . . . . . . . . . . . 12 (𝜑 → ¬ 1 ≤ 0)
3411recnd 10934 . . . . . . . . . . . . . . . . . 18 (𝜑𝑄 ∈ ℂ)
3534exp1d 13787 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄↑1) = 𝑄)
3635eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝜑𝑄 = (𝑄↑1))
3736oveq2d 7271 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 pCnt 𝑄) = (𝑄 pCnt (𝑄↑1)))
38 1zzd 12281 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℤ)
39 pcid 16502 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑄 pCnt (𝑄↑1)) = 1)
408, 38, 39syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 pCnt (𝑄↑1)) = 1)
4137, 40eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 pCnt 𝑄) = 1)
42 aks4d1p8d2.8 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄𝑁)
4342adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑃 = 𝑄) → 𝑄𝑁)
44 breq1 5073 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 = 𝑄 → (𝑃𝑁𝑄𝑁))
4544adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑃 = 𝑄) → (𝑃𝑁𝑄𝑁))
4645bicomd 222 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑃 = 𝑄) → (𝑄𝑁𝑃𝑁))
4746biimpd 228 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑃 = 𝑄) → (𝑄𝑁𝑃𝑁))
4843, 47mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑃 = 𝑄) → 𝑃𝑁)
49 aks4d1p8d2.7 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝑃𝑁)
5049adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑃 = 𝑄) → ¬ 𝑃𝑁)
5148, 50pm2.65da 813 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑃 = 𝑄)
5251neqcomd 2748 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑄 = 𝑃)
53 aks4d1p8d2.5 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃𝑅)
54 pcelnn 16499 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃𝑅))
551, 5, 54syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃𝑅))
5653, 55mpbird 256 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ)
57 prmdvdsexpb 16349 . . . . . . . . . . . . . . . . . 18 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝑅) ∈ ℕ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃))
588, 1, 56, 57syl3anc 1369 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃))
5958notbid 317 . . . . . . . . . . . . . . . 16 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ 𝑄 = 𝑃))
6052, 59mpbird 256 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))
613, 6nnexpcld 13888 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ)
62 pceq0 16500 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ) → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))))
638, 61, 62syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))))
6460, 63mpbird 256 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0)
6541, 64breq12d 5083 . . . . . . . . . . . . 13 (𝜑 → ((𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ 1 ≤ 0))
6665notbid 317 . . . . . . . . . . . 12 (𝜑 → (¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ 1 ≤ 0))
6733, 66mpbird 256 . . . . . . . . . . 11 (𝜑 → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑝 = 𝑄) → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
69 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑝 = 𝑄) → 𝑝 = 𝑄)
7069oveq1d 7270 . . . . . . . . . . . 12 ((𝜑𝑝 = 𝑄) → (𝑝 pCnt 𝑄) = (𝑄 pCnt 𝑄))
7169oveq1d 7270 . . . . . . . . . . . 12 ((𝜑𝑝 = 𝑄) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7270, 71breq12d 5083 . . . . . . . . . . 11 ((𝜑𝑝 = 𝑄) → ((𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7372notbid 317 . . . . . . . . . 10 ((𝜑𝑝 = 𝑄) → (¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7468, 73mpbird 256 . . . . . . . . 9 ((𝜑𝑝 = 𝑄) → ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7574, 8rspcime 3556 . . . . . . . 8 (𝜑 → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
76 rexnal 3165 . . . . . . . . 9 (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7776a1i 11 . . . . . . . 8 (𝜑 → (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7875, 77mpbid 231 . . . . . . 7 (𝜑 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
79 pc2dvds 16508 . . . . . . . . 9 ((𝑄 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8026, 25, 79syl2anc 583 . . . . . . . 8 (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8180notbid 317 . . . . . . 7 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8278, 81mpbird 256 . . . . . 6 (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))
83 coprm 16344 . . . . . . 7 ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1))
848, 25, 83syl2anc 583 . . . . . 6 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1))
8582, 84mpbid 231 . . . . 5 (𝜑 → (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1)
8628, 85eqtrd 2778 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = 1)
87 pcdvds 16493 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
881, 5, 87syl2anc 583 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
89 aks4d1p8d2.6 . . . 4 (𝜑𝑄𝑅)
9025, 26, 27, 86, 88, 89coprmdvds2d 39938 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅)
9125, 26zmulcld 12361 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ)
92 dvdsle 15947 . . . 4 ((((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ ∧ 𝑅 ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅))
9391, 5, 92syl2anc 583 . . 3 (𝜑 → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅))
9490, 93mpd 15 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅)
957, 12, 13, 23, 94ltletrd 11065 1 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  (class class class)co 7255  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941  cn 11903  cz 12249  cexp 13710  cdvds 15891   gcd cgcd 16129  cprime 16304   pCnt cpc 16465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466
This theorem is referenced by:  aks4d1p8  40023
  Copyright terms: Public domain W3C validator