Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p8d2 Structured version   Visualization version   GIF version

Theorem aks4d1p8d2 42103
Description: Any prime power dividing a positive integer is less than that integer if that integer has another prime factor. (Contributed by metakunt, 13-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p8d2.1 (𝜑𝑅 ∈ ℕ)
aks4d1p8d2.2 (𝜑𝑁 ∈ ℕ)
aks4d1p8d2.3 (𝜑𝑃 ∈ ℙ)
aks4d1p8d2.4 (𝜑𝑄 ∈ ℙ)
aks4d1p8d2.5 (𝜑𝑃𝑅)
aks4d1p8d2.6 (𝜑𝑄𝑅)
aks4d1p8d2.7 (𝜑 → ¬ 𝑃𝑁)
aks4d1p8d2.8 (𝜑𝑄𝑁)
Assertion
Ref Expression
aks4d1p8d2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅)

Proof of Theorem aks4d1p8d2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 aks4d1p8d2.3 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 prmnn 16698 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
43nnred 12260 . . 3 (𝜑𝑃 ∈ ℝ)
5 aks4d1p8d2.1 . . . 4 (𝜑𝑅 ∈ ℕ)
61, 5pccld 16875 . . 3 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ0)
74, 6reexpcld 14186 . 2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℝ)
8 aks4d1p8d2.4 . . . . 5 (𝜑𝑄 ∈ ℙ)
9 prmnn 16698 . . . . 5 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
108, 9syl 17 . . . 4 (𝜑𝑄 ∈ ℕ)
1110nnred 12260 . . 3 (𝜑𝑄 ∈ ℝ)
127, 11remulcld 11270 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℝ)
135nnred 12260 . 2 (𝜑𝑅 ∈ ℝ)
147recnd 11268 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℂ)
1514mulridd 11257 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) = (𝑃↑(𝑃 pCnt 𝑅)))
16 1red 11241 . . . 4 (𝜑 → 1 ∈ ℝ)
173nnrpd 13054 . . . . 5 (𝜑𝑃 ∈ ℝ+)
186nn0zd 12619 . . . . 5 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℤ)
1917, 18rpexpcld 14270 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℝ+)
20 prmgt1 16721 . . . . 5 (𝑄 ∈ ℙ → 1 < 𝑄)
218, 20syl 17 . . . 4 (𝜑 → 1 < 𝑄)
2216, 11, 19, 21ltmul2dd 13112 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄))
2315, 22eqbrtrrd 5148 . 2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄))
243nnzd 12620 . . . . 5 (𝜑𝑃 ∈ ℤ)
2524, 6zexpcld 14110 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ)
2610nnzd 12620 . . . 4 (𝜑𝑄 ∈ ℤ)
275nnzd 12620 . . . 4 (𝜑𝑅 ∈ ℤ)
2825, 26gcdcomd 16538 . . . . 5 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))))
29 0lt1 11764 . . . . . . . . . . . . . 14 0 < 1
3029a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
31 0red 11243 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
3231, 16ltnled 11387 . . . . . . . . . . . . 13 (𝜑 → (0 < 1 ↔ ¬ 1 ≤ 0))
3330, 32mpbid 232 . . . . . . . . . . . 12 (𝜑 → ¬ 1 ≤ 0)
3411recnd 11268 . . . . . . . . . . . . . . . . . 18 (𝜑𝑄 ∈ ℂ)
3534exp1d 14164 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄↑1) = 𝑄)
3635eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝜑𝑄 = (𝑄↑1))
3736oveq2d 7426 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 pCnt 𝑄) = (𝑄 pCnt (𝑄↑1)))
38 1zzd 12628 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℤ)
39 pcid 16898 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑄 pCnt (𝑄↑1)) = 1)
408, 38, 39syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 pCnt (𝑄↑1)) = 1)
4137, 40eqtrd 2771 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 pCnt 𝑄) = 1)
42 aks4d1p8d2.8 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄𝑁)
4342adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑃 = 𝑄) → 𝑄𝑁)
44 breq1 5127 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 = 𝑄 → (𝑃𝑁𝑄𝑁))
4544adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑃 = 𝑄) → (𝑃𝑁𝑄𝑁))
4645bicomd 223 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑃 = 𝑄) → (𝑄𝑁𝑃𝑁))
4746biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑃 = 𝑄) → (𝑄𝑁𝑃𝑁))
4843, 47mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑃 = 𝑄) → 𝑃𝑁)
49 aks4d1p8d2.7 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝑃𝑁)
5049adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑃 = 𝑄) → ¬ 𝑃𝑁)
5148, 50pm2.65da 816 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑃 = 𝑄)
5251neqcomd 2746 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑄 = 𝑃)
53 aks4d1p8d2.5 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃𝑅)
54 pcelnn 16895 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃𝑅))
551, 5, 54syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃𝑅))
5653, 55mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ)
57 prmdvdsexpb 16740 . . . . . . . . . . . . . . . . . 18 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝑅) ∈ ℕ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃))
588, 1, 56, 57syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃))
5958notbid 318 . . . . . . . . . . . . . . . 16 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ 𝑄 = 𝑃))
6052, 59mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))
613, 6nnexpcld 14268 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ)
62 pceq0 16896 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ) → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))))
638, 61, 62syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))))
6460, 63mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0)
6541, 64breq12d 5137 . . . . . . . . . . . . 13 (𝜑 → ((𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ 1 ≤ 0))
6665notbid 318 . . . . . . . . . . . 12 (𝜑 → (¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ 1 ≤ 0))
6733, 66mpbird 257 . . . . . . . . . . 11 (𝜑 → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑝 = 𝑄) → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
69 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑝 = 𝑄) → 𝑝 = 𝑄)
7069oveq1d 7425 . . . . . . . . . . . 12 ((𝜑𝑝 = 𝑄) → (𝑝 pCnt 𝑄) = (𝑄 pCnt 𝑄))
7169oveq1d 7425 . . . . . . . . . . . 12 ((𝜑𝑝 = 𝑄) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7270, 71breq12d 5137 . . . . . . . . . . 11 ((𝜑𝑝 = 𝑄) → ((𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7372notbid 318 . . . . . . . . . 10 ((𝜑𝑝 = 𝑄) → (¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7468, 73mpbird 257 . . . . . . . . 9 ((𝜑𝑝 = 𝑄) → ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7574, 8rspcime 3611 . . . . . . . 8 (𝜑 → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
76 rexnal 3090 . . . . . . . . 9 (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7776a1i 11 . . . . . . . 8 (𝜑 → (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7875, 77mpbid 232 . . . . . . 7 (𝜑 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
79 pc2dvds 16904 . . . . . . . . 9 ((𝑄 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8026, 25, 79syl2anc 584 . . . . . . . 8 (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8180notbid 318 . . . . . . 7 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8278, 81mpbird 257 . . . . . 6 (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))
83 coprm 16735 . . . . . . 7 ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1))
848, 25, 83syl2anc 584 . . . . . 6 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1))
8582, 84mpbid 232 . . . . 5 (𝜑 → (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1)
8628, 85eqtrd 2771 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = 1)
87 pcdvds 16889 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
881, 5, 87syl2anc 584 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
89 aks4d1p8d2.6 . . . 4 (𝜑𝑄𝑅)
9025, 26, 27, 86, 88, 89coprmdvds2d 42019 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅)
9125, 26zmulcld 12708 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ)
92 dvdsle 16334 . . . 4 ((((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ ∧ 𝑅 ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅))
9391, 5, 92syl2anc 584 . . 3 (𝜑 → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅))
9490, 93mpd 15 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅)
957, 12, 13, 23, 94ltletrd 11400 1 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061   class class class wbr 5124  (class class class)co 7410  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274  cle 11275  cn 12245  cz 12593  cexp 14084  cdvds 16277   gcd cgcd 16518  cprime 16695   pCnt cpc 16861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-fz 13530  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862
This theorem is referenced by:  aks4d1p8  42105
  Copyright terms: Public domain W3C validator