| Step | Hyp | Ref
| Expression |
| 1 | | aks4d1p8d2.3 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 2 | | prmnn 16698 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | 3 | nnred 12260 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 5 | | aks4d1p8d2.1 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ℕ) |
| 6 | 1, 5 | pccld 16875 |
. . 3
⊢ (𝜑 → (𝑃 pCnt 𝑅) ∈
ℕ0) |
| 7 | 4, 6 | reexpcld 14186 |
. 2
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℝ) |
| 8 | | aks4d1p8d2.4 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ ℙ) |
| 9 | | prmnn 16698 |
. . . . 5
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℕ) |
| 10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ ℕ) |
| 11 | 10 | nnred 12260 |
. . 3
⊢ (𝜑 → 𝑄 ∈ ℝ) |
| 12 | 7, 11 | remulcld 11270 |
. 2
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℝ) |
| 13 | 5 | nnred 12260 |
. 2
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 14 | 7 | recnd 11268 |
. . . 4
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℂ) |
| 15 | 14 | mulridd 11257 |
. . 3
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) = (𝑃↑(𝑃 pCnt 𝑅))) |
| 16 | | 1red 11241 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
| 17 | 3 | nnrpd 13054 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈
ℝ+) |
| 18 | 6 | nn0zd 12619 |
. . . . 5
⊢ (𝜑 → (𝑃 pCnt 𝑅) ∈ ℤ) |
| 19 | 17, 18 | rpexpcld 14270 |
. . . 4
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈
ℝ+) |
| 20 | | prmgt1 16721 |
. . . . 5
⊢ (𝑄 ∈ ℙ → 1 <
𝑄) |
| 21 | 8, 20 | syl 17 |
. . . 4
⊢ (𝜑 → 1 < 𝑄) |
| 22 | 16, 11, 19, 21 | ltmul2dd 13112 |
. . 3
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄)) |
| 23 | 15, 22 | eqbrtrrd 5148 |
. 2
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄)) |
| 24 | 3 | nnzd 12620 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 25 | 24, 6 | zexpcld 14110 |
. . . 4
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) |
| 26 | 10 | nnzd 12620 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ ℤ) |
| 27 | 5 | nnzd 12620 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ℤ) |
| 28 | 25, 26 | gcdcomd 16538 |
. . . . 5
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅)))) |
| 29 | | 0lt1 11764 |
. . . . . . . . . . . . . 14
⊢ 0 <
1 |
| 30 | 29 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < 1) |
| 31 | | 0red 11243 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℝ) |
| 32 | 31, 16 | ltnled 11387 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 < 1 ↔ ¬ 1
≤ 0)) |
| 33 | 30, 32 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 1 ≤
0) |
| 34 | 11 | recnd 11268 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 35 | 34 | exp1d 14164 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑄↑1) = 𝑄) |
| 36 | 35 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑄 = (𝑄↑1)) |
| 37 | 36 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑄 pCnt 𝑄) = (𝑄 pCnt (𝑄↑1))) |
| 38 | | 1zzd 12628 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℤ) |
| 39 | | pcid 16898 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑄 ∈ ℙ ∧ 1 ∈
ℤ) → (𝑄 pCnt
(𝑄↑1)) =
1) |
| 40 | 8, 38, 39 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑄 pCnt (𝑄↑1)) = 1) |
| 41 | 37, 40 | eqtrd 2771 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄 pCnt 𝑄) = 1) |
| 42 | | aks4d1p8d2.8 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑄 ∥ 𝑁) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → 𝑄 ∥ 𝑁) |
| 44 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 = 𝑄 → (𝑃 ∥ 𝑁 ↔ 𝑄 ∥ 𝑁)) |
| 45 | 44 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → (𝑃 ∥ 𝑁 ↔ 𝑄 ∥ 𝑁)) |
| 46 | 45 | bicomd 223 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → (𝑄 ∥ 𝑁 ↔ 𝑃 ∥ 𝑁)) |
| 47 | 46 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → (𝑄 ∥ 𝑁 → 𝑃 ∥ 𝑁)) |
| 48 | 43, 47 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → 𝑃 ∥ 𝑁) |
| 49 | | aks4d1p8d2.7 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝑃 ∥ 𝑁) |
| 50 | 49 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → ¬ 𝑃 ∥ 𝑁) |
| 51 | 48, 50 | pm2.65da 816 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ¬ 𝑃 = 𝑄) |
| 52 | 51 | neqcomd 2746 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝑄 = 𝑃) |
| 53 | | aks4d1p8d2.5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∥ 𝑅) |
| 54 | | pcelnn 16895 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃 ∥ 𝑅)) |
| 55 | 1, 5, 54 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃 ∥ 𝑅)) |
| 56 | 53, 55 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ) |
| 57 | | prmdvdsexpb 16740 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝑅) ∈ ℕ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃)) |
| 58 | 8, 1, 56, 57 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃)) |
| 59 | 58 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ 𝑄 = 𝑃)) |
| 60 | 52, 59 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))) |
| 61 | 3, 6 | nnexpcld 14268 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ) |
| 62 | | pceq0 16896 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ) → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))) |
| 63 | 8, 61, 62 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))) |
| 64 | 60, 63 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0) |
| 65 | 41, 64 | breq12d 5137 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ 1 ≤ 0)) |
| 66 | 65 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝜑 → (¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ 1 ≤ 0)) |
| 67 | 33, 66 | mpbird 257 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
| 68 | 67 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
| 69 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → 𝑝 = 𝑄) |
| 70 | 69 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → (𝑝 pCnt 𝑄) = (𝑄 pCnt 𝑄)) |
| 71 | 69 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
| 72 | 70, 71 | breq12d 5137 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → ((𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
| 73 | 72 | notbid 318 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → (¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
| 74 | 68, 73 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
| 75 | 74, 8 | rspcime 3611 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
| 76 | | rexnal 3090 |
. . . . . . . . 9
⊢
(∃𝑝 ∈
ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
| 77 | 76 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
| 78 | 75, 77 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
| 79 | | pc2dvds 16904 |
. . . . . . . . 9
⊢ ((𝑄 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
| 80 | 26, 25, 79 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
| 81 | 80 | notbid 318 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
| 82 | 78, 81 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))) |
| 83 | | coprm 16735 |
. . . . . . 7
⊢ ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1)) |
| 84 | 8, 25, 83 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1)) |
| 85 | 82, 84 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1) |
| 86 | 28, 85 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = 1) |
| 87 | | pcdvds 16889 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅) |
| 88 | 1, 5, 87 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅) |
| 89 | | aks4d1p8d2.6 |
. . . 4
⊢ (𝜑 → 𝑄 ∥ 𝑅) |
| 90 | 25, 26, 27, 86, 88, 89 | coprmdvds2d 42019 |
. . 3
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅) |
| 91 | 25, 26 | zmulcld 12708 |
. . . 4
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ) |
| 92 | | dvdsle 16334 |
. . . 4
⊢ ((((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ ∧ 𝑅 ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅)) |
| 93 | 91, 5, 92 | syl2anc 584 |
. . 3
⊢ (𝜑 → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅)) |
| 94 | 90, 93 | mpd 15 |
. 2
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅) |
| 95 | 7, 12, 13, 23, 94 | ltletrd 11400 |
1
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅) |