Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p8d2 Structured version   Visualization version   GIF version

Theorem aks4d1p8d2 42177
Description: Any prime power dividing a positive integer is less than that integer if that integer has another prime factor. (Contributed by metakunt, 13-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p8d2.1 (𝜑𝑅 ∈ ℕ)
aks4d1p8d2.2 (𝜑𝑁 ∈ ℕ)
aks4d1p8d2.3 (𝜑𝑃 ∈ ℙ)
aks4d1p8d2.4 (𝜑𝑄 ∈ ℙ)
aks4d1p8d2.5 (𝜑𝑃𝑅)
aks4d1p8d2.6 (𝜑𝑄𝑅)
aks4d1p8d2.7 (𝜑 → ¬ 𝑃𝑁)
aks4d1p8d2.8 (𝜑𝑄𝑁)
Assertion
Ref Expression
aks4d1p8d2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅)

Proof of Theorem aks4d1p8d2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 aks4d1p8d2.3 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 prmnn 16585 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
43nnred 12140 . . 3 (𝜑𝑃 ∈ ℝ)
5 aks4d1p8d2.1 . . . 4 (𝜑𝑅 ∈ ℕ)
61, 5pccld 16762 . . 3 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ0)
74, 6reexpcld 14070 . 2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℝ)
8 aks4d1p8d2.4 . . . . 5 (𝜑𝑄 ∈ ℙ)
9 prmnn 16585 . . . . 5 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
108, 9syl 17 . . . 4 (𝜑𝑄 ∈ ℕ)
1110nnred 12140 . . 3 (𝜑𝑄 ∈ ℝ)
127, 11remulcld 11142 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℝ)
135nnred 12140 . 2 (𝜑𝑅 ∈ ℝ)
147recnd 11140 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℂ)
1514mulridd 11129 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) = (𝑃↑(𝑃 pCnt 𝑅)))
16 1red 11113 . . . 4 (𝜑 → 1 ∈ ℝ)
173nnrpd 12932 . . . . 5 (𝜑𝑃 ∈ ℝ+)
186nn0zd 12494 . . . . 5 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℤ)
1917, 18rpexpcld 14154 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℝ+)
20 prmgt1 16608 . . . . 5 (𝑄 ∈ ℙ → 1 < 𝑄)
218, 20syl 17 . . . 4 (𝜑 → 1 < 𝑄)
2216, 11, 19, 21ltmul2dd 12990 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄))
2315, 22eqbrtrrd 5113 . 2 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄))
243nnzd 12495 . . . . 5 (𝜑𝑃 ∈ ℤ)
2524, 6zexpcld 13994 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ)
2610nnzd 12495 . . . 4 (𝜑𝑄 ∈ ℤ)
275nnzd 12495 . . . 4 (𝜑𝑅 ∈ ℤ)
2825, 26gcdcomd 16425 . . . . 5 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))))
29 0lt1 11639 . . . . . . . . . . . . . 14 0 < 1
3029a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
31 0red 11115 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
3231, 16ltnled 11260 . . . . . . . . . . . . 13 (𝜑 → (0 < 1 ↔ ¬ 1 ≤ 0))
3330, 32mpbid 232 . . . . . . . . . . . 12 (𝜑 → ¬ 1 ≤ 0)
3411recnd 11140 . . . . . . . . . . . . . . . . . 18 (𝜑𝑄 ∈ ℂ)
3534exp1d 14048 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄↑1) = 𝑄)
3635eqcomd 2737 . . . . . . . . . . . . . . . 16 (𝜑𝑄 = (𝑄↑1))
3736oveq2d 7362 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 pCnt 𝑄) = (𝑄 pCnt (𝑄↑1)))
38 1zzd 12503 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℤ)
39 pcid 16785 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑄 pCnt (𝑄↑1)) = 1)
408, 38, 39syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 pCnt (𝑄↑1)) = 1)
4137, 40eqtrd 2766 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 pCnt 𝑄) = 1)
42 aks4d1p8d2.8 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄𝑁)
4342adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑃 = 𝑄) → 𝑄𝑁)
44 breq1 5092 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 = 𝑄 → (𝑃𝑁𝑄𝑁))
4544adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑃 = 𝑄) → (𝑃𝑁𝑄𝑁))
4645bicomd 223 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑃 = 𝑄) → (𝑄𝑁𝑃𝑁))
4746biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑃 = 𝑄) → (𝑄𝑁𝑃𝑁))
4843, 47mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑃 = 𝑄) → 𝑃𝑁)
49 aks4d1p8d2.7 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ¬ 𝑃𝑁)
5049adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑃 = 𝑄) → ¬ 𝑃𝑁)
5148, 50pm2.65da 816 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑃 = 𝑄)
5251neqcomd 2741 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑄 = 𝑃)
53 aks4d1p8d2.5 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃𝑅)
54 pcelnn 16782 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃𝑅))
551, 5, 54syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃𝑅))
5653, 55mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ)
57 prmdvdsexpb 16627 . . . . . . . . . . . . . . . . . 18 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝑅) ∈ ℕ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃))
588, 1, 56, 57syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃))
5958notbid 318 . . . . . . . . . . . . . . . 16 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ 𝑄 = 𝑃))
6052, 59mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))
613, 6nnexpcld 14152 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ)
62 pceq0 16783 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ) → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))))
638, 61, 62syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))))
6460, 63mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0)
6541, 64breq12d 5102 . . . . . . . . . . . . 13 (𝜑 → ((𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ 1 ≤ 0))
6665notbid 318 . . . . . . . . . . . 12 (𝜑 → (¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ 1 ≤ 0))
6733, 66mpbird 257 . . . . . . . . . . 11 (𝜑 → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑝 = 𝑄) → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
69 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑝 = 𝑄) → 𝑝 = 𝑄)
7069oveq1d 7361 . . . . . . . . . . . 12 ((𝜑𝑝 = 𝑄) → (𝑝 pCnt 𝑄) = (𝑄 pCnt 𝑄))
7169oveq1d 7361 . . . . . . . . . . . 12 ((𝜑𝑝 = 𝑄) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7270, 71breq12d 5102 . . . . . . . . . . 11 ((𝜑𝑝 = 𝑄) → ((𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7372notbid 318 . . . . . . . . . 10 ((𝜑𝑝 = 𝑄) → (¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7468, 73mpbird 257 . . . . . . . . 9 ((𝜑𝑝 = 𝑄) → ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7574, 8rspcime 3577 . . . . . . . 8 (𝜑 → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
76 rexnal 3084 . . . . . . . . 9 (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
7776a1i 11 . . . . . . . 8 (𝜑 → (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
7875, 77mpbid 232 . . . . . . 7 (𝜑 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))
79 pc2dvds 16791 . . . . . . . . 9 ((𝑄 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8026, 25, 79syl2anc 584 . . . . . . . 8 (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8180notbid 318 . . . . . . 7 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))))
8278, 81mpbird 257 . . . . . 6 (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))
83 coprm 16622 . . . . . . 7 ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1))
848, 25, 83syl2anc 584 . . . . . 6 (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1))
8582, 84mpbid 232 . . . . 5 (𝜑 → (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1)
8628, 85eqtrd 2766 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = 1)
87 pcdvds 16776 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
881, 5, 87syl2anc 584 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅)
89 aks4d1p8d2.6 . . . 4 (𝜑𝑄𝑅)
9025, 26, 27, 86, 88, 89coprmdvds2d 42093 . . 3 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅)
9125, 26zmulcld 12583 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ)
92 dvdsle 16221 . . . 4 ((((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ ∧ 𝑅 ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅))
9391, 5, 92syl2anc 584 . . 3 (𝜑 → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅))
9490, 93mpd 15 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅)
957, 12, 13, 23, 94ltletrd 11273 1 (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5089  (class class class)co 7346  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147  cn 12125  cz 12468  cexp 13968  cdvds 16163   gcd cgcd 16405  cprime 16582   pCnt cpc 16748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749
This theorem is referenced by:  aks4d1p8  42179
  Copyright terms: Public domain W3C validator