Step | Hyp | Ref
| Expression |
1 | | aks4d1p8d2.3 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℙ) |
2 | | prmnn 16390 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℕ) |
4 | 3 | nnred 11999 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℝ) |
5 | | aks4d1p8d2.1 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ℕ) |
6 | 1, 5 | pccld 16562 |
. . 3
⊢ (𝜑 → (𝑃 pCnt 𝑅) ∈
ℕ0) |
7 | 4, 6 | reexpcld 13892 |
. 2
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℝ) |
8 | | aks4d1p8d2.4 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ ℙ) |
9 | | prmnn 16390 |
. . . . 5
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℕ) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ ℕ) |
11 | 10 | nnred 11999 |
. . 3
⊢ (𝜑 → 𝑄 ∈ ℝ) |
12 | 7, 11 | remulcld 11016 |
. 2
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℝ) |
13 | 5 | nnred 11999 |
. 2
⊢ (𝜑 → 𝑅 ∈ ℝ) |
14 | 7 | recnd 11014 |
. . . 4
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℂ) |
15 | 14 | mulid1d 11003 |
. . 3
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) = (𝑃↑(𝑃 pCnt 𝑅))) |
16 | | 1red 10987 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
17 | 3 | nnrpd 12781 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈
ℝ+) |
18 | 6 | nn0zd 12435 |
. . . . 5
⊢ (𝜑 → (𝑃 pCnt 𝑅) ∈ ℤ) |
19 | 17, 18 | rpexpcld 13973 |
. . . 4
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈
ℝ+) |
20 | | prmgt1 16413 |
. . . . 5
⊢ (𝑄 ∈ ℙ → 1 <
𝑄) |
21 | 8, 20 | syl 17 |
. . . 4
⊢ (𝜑 → 1 < 𝑄) |
22 | 16, 11, 19, 21 | ltmul2dd 12839 |
. . 3
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 1) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄)) |
23 | 15, 22 | eqbrtrrd 5103 |
. 2
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄)) |
24 | 3 | nnzd 12436 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℤ) |
25 | 24, 6 | zexpcld 13819 |
. . . 4
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) |
26 | 10 | nnzd 12436 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ ℤ) |
27 | 5 | nnzd 12436 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ℤ) |
28 | 25, 26 | gcdcomd 16232 |
. . . . 5
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅)))) |
29 | | 0lt1 11508 |
. . . . . . . . . . . . . 14
⊢ 0 <
1 |
30 | 29 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < 1) |
31 | | 0red 10989 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℝ) |
32 | 31, 16 | ltnled 11133 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 < 1 ↔ ¬ 1
≤ 0)) |
33 | 30, 32 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 1 ≤
0) |
34 | 11 | recnd 11014 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑄 ∈ ℂ) |
35 | 34 | exp1d 13870 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑄↑1) = 𝑄) |
36 | 35 | eqcomd 2746 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑄 = (𝑄↑1)) |
37 | 36 | oveq2d 7288 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑄 pCnt 𝑄) = (𝑄 pCnt (𝑄↑1))) |
38 | | 1zzd 12362 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℤ) |
39 | | pcid 16585 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑄 ∈ ℙ ∧ 1 ∈
ℤ) → (𝑄 pCnt
(𝑄↑1)) =
1) |
40 | 8, 38, 39 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑄 pCnt (𝑄↑1)) = 1) |
41 | 37, 40 | eqtrd 2780 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄 pCnt 𝑄) = 1) |
42 | | aks4d1p8d2.8 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑄 ∥ 𝑁) |
43 | 42 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → 𝑄 ∥ 𝑁) |
44 | | breq1 5082 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 = 𝑄 → (𝑃 ∥ 𝑁 ↔ 𝑄 ∥ 𝑁)) |
45 | 44 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → (𝑃 ∥ 𝑁 ↔ 𝑄 ∥ 𝑁)) |
46 | 45 | bicomd 222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → (𝑄 ∥ 𝑁 ↔ 𝑃 ∥ 𝑁)) |
47 | 46 | biimpd 228 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → (𝑄 ∥ 𝑁 → 𝑃 ∥ 𝑁)) |
48 | 43, 47 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → 𝑃 ∥ 𝑁) |
49 | | aks4d1p8d2.7 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝑃 ∥ 𝑁) |
50 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑃 = 𝑄) → ¬ 𝑃 ∥ 𝑁) |
51 | 48, 50 | pm2.65da 814 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ¬ 𝑃 = 𝑄) |
52 | 51 | neqcomd 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝑄 = 𝑃) |
53 | | aks4d1p8d2.5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∥ 𝑅) |
54 | | pcelnn 16582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃 ∥ 𝑅)) |
55 | 1, 5, 54 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑃 pCnt 𝑅) ∈ ℕ ↔ 𝑃 ∥ 𝑅)) |
56 | 53, 55 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑃 pCnt 𝑅) ∈ ℕ) |
57 | | prmdvdsexpb 16432 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝑅) ∈ ℕ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃)) |
58 | 8, 1, 56, 57 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ 𝑄 = 𝑃)) |
59 | 58 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ 𝑄 = 𝑃)) |
60 | 52, 59 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))) |
61 | 3, 6 | nnexpcld 13971 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ) |
62 | | pceq0 16583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℕ) → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))) |
63 | 8, 61, 62 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0 ↔ ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)))) |
64 | 60, 63 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = 0) |
65 | 41, 64 | breq12d 5092 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ 1 ≤ 0)) |
66 | 65 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝜑 → (¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ 1 ≤ 0)) |
67 | 33, 66 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
68 | 67 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
69 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → 𝑝 = 𝑄) |
70 | 69 | oveq1d 7287 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → (𝑝 pCnt 𝑄) = (𝑄 pCnt 𝑄)) |
71 | 69 | oveq1d 7287 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) = (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
72 | 70, 71 | breq12d 5092 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → ((𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
73 | 72 | notbid 318 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → (¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ (𝑄 pCnt 𝑄) ≤ (𝑄 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
74 | 68, 73 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 = 𝑄) → ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
75 | 74, 8 | rspcime 3565 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
76 | | rexnal 3168 |
. . . . . . . . 9
⊢
(∃𝑝 ∈
ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
77 | 76 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑝 ∈ ℙ ¬ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
78 | 75, 77 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅)))) |
79 | | pc2dvds 16591 |
. . . . . . . . 9
⊢ ((𝑄 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
80 | 26, 25, 79 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
81 | 80 | notbid 318 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑄) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝑅))))) |
82 | 78, 81 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅))) |
83 | | coprm 16427 |
. . . . . . 7
⊢ ((𝑄 ∈ ℙ ∧ (𝑃↑(𝑃 pCnt 𝑅)) ∈ ℤ) → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1)) |
84 | 8, 25, 83 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (¬ 𝑄 ∥ (𝑃↑(𝑃 pCnt 𝑅)) ↔ (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1)) |
85 | 82, 84 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑄 gcd (𝑃↑(𝑃 pCnt 𝑅))) = 1) |
86 | 28, 85 | eqtrd 2780 |
. . . 4
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) gcd 𝑄) = 1) |
87 | | pcdvds 16576 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅) |
88 | 1, 5, 87 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) ∥ 𝑅) |
89 | | aks4d1p8d2.6 |
. . . 4
⊢ (𝜑 → 𝑄 ∥ 𝑅) |
90 | 25, 26, 27, 86, 88, 89 | coprmdvds2d 40019 |
. . 3
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅) |
91 | 25, 26 | zmulcld 12443 |
. . . 4
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ) |
92 | | dvdsle 16030 |
. . . 4
⊢ ((((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∈ ℤ ∧ 𝑅 ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅)) |
93 | 91, 5, 92 | syl2anc 584 |
. . 3
⊢ (𝜑 → (((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ∥ 𝑅 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅)) |
94 | 90, 93 | mpd 15 |
. 2
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑅)) · 𝑄) ≤ 𝑅) |
95 | 7, 12, 13, 23, 94 | ltletrd 11146 |
1
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑅)) < 𝑅) |