| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpgnsgd | Structured version Visualization version GIF version | ||
| Description: The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| simpgnsgd.1 | ⊢ 𝐵 = (Base‘𝐺) |
| simpgnsgd.2 | ⊢ 0 = (0g‘𝐺) |
| simpgnsgd.3 | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
| Ref | Expression |
|---|---|
| simpgnsgd | ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn 8609 | . . . . 5 ⊢ 2o ∈ ω | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 2o ∈ ω) |
| 3 | nnfi 9137 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 2o ∈ Fin) |
| 5 | simpgnsgd.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
| 6 | simpg2nsg 20035 | . . . 4 ⊢ (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 2o) |
| 8 | enfii 9156 | . . 3 ⊢ ((2o ∈ Fin ∧ (NrmSGrp‘𝐺) ≈ 2o) → (NrmSGrp‘𝐺) ∈ Fin) | |
| 9 | 4, 7, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (NrmSGrp‘𝐺) ∈ Fin) |
| 10 | simpgnsgd.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 11 | simpgnsgd.2 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 12 | 5 | simpggrpd 20034 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 13 | 10, 11, 12 | 0idnsgd 19110 | . 2 ⊢ (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺)) |
| 14 | snex 5394 | . . . . . 6 ⊢ { 0 } ∈ V | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → { 0 } ∈ V) |
| 16 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| 17 | fvex 6874 | . . . . . 6 ⊢ (Base‘𝐺) ∈ V | |
| 18 | 16, 17 | eqeltrdi 2837 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 19 | 10, 11, 5 | simpgntrivd 20037 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐵 = { 0 }) |
| 20 | 19 | neqcomd 2740 | . . . . 5 ⊢ (𝜑 → ¬ { 0 } = 𝐵) |
| 21 | 15, 18, 20 | enpr2d 9023 | . . . 4 ⊢ (𝜑 → {{ 0 }, 𝐵} ≈ 2o) |
| 22 | 21 | ensymd 8979 | . . 3 ⊢ (𝜑 → 2o ≈ {{ 0 }, 𝐵}) |
| 23 | entr 8980 | . . 3 ⊢ (((NrmSGrp‘𝐺) ≈ 2o ∧ 2o ≈ {{ 0 }, 𝐵}) → (NrmSGrp‘𝐺) ≈ {{ 0 }, 𝐵}) | |
| 24 | 7, 22, 23 | syl2anc 584 | . 2 ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ {{ 0 }, 𝐵}) |
| 25 | 9, 13, 24 | phpeqd 9182 | 1 ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 {cpr 4594 class class class wbr 5110 ‘cfv 6514 ωcom 7845 2oc2o 8431 ≈ cen 8918 Fincfn 8921 Basecbs 17186 0gc0g 17409 NrmSGrpcnsg 19060 SimpGrpcsimpg 20029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-nsg 19063 df-simpg 20030 |
| This theorem is referenced by: simpgnsgeqd 20040 simpgnsgbid 20042 |
| Copyright terms: Public domain | W3C validator |