Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpgnsgd | Structured version Visualization version GIF version |
Description: The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
simpgnsgd.1 | ⊢ 𝐵 = (Base‘𝐺) |
simpgnsgd.2 | ⊢ 0 = (0g‘𝐺) |
simpgnsgd.3 | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Ref | Expression |
---|---|
simpgnsgd | ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 8472 | . . . . 5 ⊢ 2o ∈ ω | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 2o ∈ ω) |
3 | nnfi 8950 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 2o ∈ Fin) |
5 | simpgnsgd.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
6 | simpg2nsg 19699 | . . . 4 ⊢ (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 2o) |
8 | enfii 8972 | . . 3 ⊢ ((2o ∈ Fin ∧ (NrmSGrp‘𝐺) ≈ 2o) → (NrmSGrp‘𝐺) ∈ Fin) | |
9 | 4, 7, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (NrmSGrp‘𝐺) ∈ Fin) |
10 | simpgnsgd.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
11 | simpgnsgd.2 | . . 3 ⊢ 0 = (0g‘𝐺) | |
12 | 5 | simpggrpd 19698 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
13 | 10, 11, 12 | 0idnsgd 18799 | . 2 ⊢ (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺)) |
14 | snex 5354 | . . . . . 6 ⊢ { 0 } ∈ V | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → { 0 } ∈ V) |
16 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
17 | fvex 6787 | . . . . . 6 ⊢ (Base‘𝐺) ∈ V | |
18 | 16, 17 | eqeltrdi 2847 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
19 | 10, 11, 5 | simpgntrivd 19701 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐵 = { 0 }) |
20 | 19 | neqcomd 2748 | . . . . 5 ⊢ (𝜑 → ¬ { 0 } = 𝐵) |
21 | 15, 18, 20 | enpr2d 8838 | . . . 4 ⊢ (𝜑 → {{ 0 }, 𝐵} ≈ 2o) |
22 | 21 | ensymd 8791 | . . 3 ⊢ (𝜑 → 2o ≈ {{ 0 }, 𝐵}) |
23 | entr 8792 | . . 3 ⊢ (((NrmSGrp‘𝐺) ≈ 2o ∧ 2o ≈ {{ 0 }, 𝐵}) → (NrmSGrp‘𝐺) ≈ {{ 0 }, 𝐵}) | |
24 | 7, 22, 23 | syl2anc 584 | . 2 ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ {{ 0 }, 𝐵}) |
25 | 9, 13, 24 | phpeqd 8998 | 1 ⊢ (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 {cpr 4563 class class class wbr 5074 ‘cfv 6433 ωcom 7712 2oc2o 8291 ≈ cen 8730 Fincfn 8733 Basecbs 16912 0gc0g 17150 NrmSGrpcnsg 18750 SimpGrpcsimpg 19693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-nsg 18753 df-simpg 19694 |
This theorem is referenced by: simpgnsgeqd 19704 simpgnsgbid 19706 |
Copyright terms: Public domain | W3C validator |