MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpgnsgd Structured version   Visualization version   GIF version

Theorem simpgnsgd 19215
Description: The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
simpgnsgd.1 𝐵 = (Base‘𝐺)
simpgnsgd.2 0 = (0g𝐺)
simpgnsgd.3 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
simpgnsgd (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})

Proof of Theorem simpgnsgd
StepHypRef Expression
1 2onn 8249 . . . . 5 2o ∈ ω
21a1i 11 . . . 4 (𝜑 → 2o ∈ ω)
3 nnfi 8696 . . . 4 (2o ∈ ω → 2o ∈ Fin)
42, 3syl 17 . . 3 (𝜑 → 2o ∈ Fin)
5 simpgnsgd.3 . . . 4 (𝜑𝐺 ∈ SimpGrp)
6 simpg2nsg 19211 . . . 4 (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)
75, 6syl 17 . . 3 (𝜑 → (NrmSGrp‘𝐺) ≈ 2o)
8 enfii 8719 . . 3 ((2o ∈ Fin ∧ (NrmSGrp‘𝐺) ≈ 2o) → (NrmSGrp‘𝐺) ∈ Fin)
94, 7, 8syl2anc 587 . 2 (𝜑 → (NrmSGrp‘𝐺) ∈ Fin)
10 simpgnsgd.1 . . 3 𝐵 = (Base‘𝐺)
11 simpgnsgd.2 . . 3 0 = (0g𝐺)
125simpggrpd 19210 . . 3 (𝜑𝐺 ∈ Grp)
1310, 11, 120idnsgd 18315 . 2 (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺))
14 snex 5297 . . . . . 6 { 0 } ∈ V
1514a1i 11 . . . . 5 (𝜑 → { 0 } ∈ V)
1610a1i 11 . . . . . 6 (𝜑𝐵 = (Base‘𝐺))
17 fvex 6658 . . . . . 6 (Base‘𝐺) ∈ V
1816, 17eqeltrdi 2898 . . . . 5 (𝜑𝐵 ∈ V)
1910, 11, 5simpgntrivd 19213 . . . . . 6 (𝜑 → ¬ 𝐵 = { 0 })
2019neqcomd 2808 . . . . 5 (𝜑 → ¬ { 0 } = 𝐵)
2115, 18, 20enpr2d 8580 . . . 4 (𝜑 → {{ 0 }, 𝐵} ≈ 2o)
2221ensymd 8543 . . 3 (𝜑 → 2o ≈ {{ 0 }, 𝐵})
23 entr 8544 . . 3 (((NrmSGrp‘𝐺) ≈ 2o ∧ 2o ≈ {{ 0 }, 𝐵}) → (NrmSGrp‘𝐺) ≈ {{ 0 }, 𝐵})
247, 22, 23syl2anc 587 . 2 (𝜑 → (NrmSGrp‘𝐺) ≈ {{ 0 }, 𝐵})
259, 13, 24phpeqd 8690 1 (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  {csn 4525  {cpr 4527   class class class wbr 5030  cfv 6324  ωcom 7560  2oc2o 8079  cen 8489  Fincfn 8492  Basecbs 16475  0gc0g 16705  NrmSGrpcnsg 18266  SimpGrpcsimpg 19205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-nsg 18269  df-simpg 19206
This theorem is referenced by:  simpgnsgeqd  19216  simpgnsgbid  19218
  Copyright terms: Public domain W3C validator