MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpgnsgd Structured version   Visualization version   GIF version

Theorem simpgnsgd 20135
Description: The only normal subgroups of a simple group are the group itself and the trivial group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
simpgnsgd.1 𝐵 = (Base‘𝐺)
simpgnsgd.2 0 = (0g𝐺)
simpgnsgd.3 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
simpgnsgd (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})

Proof of Theorem simpgnsgd
StepHypRef Expression
1 2onn 8679 . . . . 5 2o ∈ ω
21a1i 11 . . . 4 (𝜑 → 2o ∈ ω)
3 nnfi 9206 . . . 4 (2o ∈ ω → 2o ∈ Fin)
42, 3syl 17 . . 3 (𝜑 → 2o ∈ Fin)
5 simpgnsgd.3 . . . 4 (𝜑𝐺 ∈ SimpGrp)
6 simpg2nsg 20131 . . . 4 (𝐺 ∈ SimpGrp → (NrmSGrp‘𝐺) ≈ 2o)
75, 6syl 17 . . 3 (𝜑 → (NrmSGrp‘𝐺) ≈ 2o)
8 enfii 9224 . . 3 ((2o ∈ Fin ∧ (NrmSGrp‘𝐺) ≈ 2o) → (NrmSGrp‘𝐺) ∈ Fin)
94, 7, 8syl2anc 584 . 2 (𝜑 → (NrmSGrp‘𝐺) ∈ Fin)
10 simpgnsgd.1 . . 3 𝐵 = (Base‘𝐺)
11 simpgnsgd.2 . . 3 0 = (0g𝐺)
125simpggrpd 20130 . . 3 (𝜑𝐺 ∈ Grp)
1310, 11, 120idnsgd 19202 . 2 (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺))
14 snex 5442 . . . . . 6 { 0 } ∈ V
1514a1i 11 . . . . 5 (𝜑 → { 0 } ∈ V)
1610a1i 11 . . . . . 6 (𝜑𝐵 = (Base‘𝐺))
17 fvex 6920 . . . . . 6 (Base‘𝐺) ∈ V
1816, 17eqeltrdi 2847 . . . . 5 (𝜑𝐵 ∈ V)
1910, 11, 5simpgntrivd 20133 . . . . . 6 (𝜑 → ¬ 𝐵 = { 0 })
2019neqcomd 2745 . . . . 5 (𝜑 → ¬ { 0 } = 𝐵)
2115, 18, 20enpr2d 9088 . . . 4 (𝜑 → {{ 0 }, 𝐵} ≈ 2o)
2221ensymd 9044 . . 3 (𝜑 → 2o ≈ {{ 0 }, 𝐵})
23 entr 9045 . . 3 (((NrmSGrp‘𝐺) ≈ 2o ∧ 2o ≈ {{ 0 }, 𝐵}) → (NrmSGrp‘𝐺) ≈ {{ 0 }, 𝐵})
247, 22, 23syl2anc 584 . 2 (𝜑 → (NrmSGrp‘𝐺) ≈ {{ 0 }, 𝐵})
259, 13, 24phpeqd 9250 1 (𝜑 → (NrmSGrp‘𝐺) = {{ 0 }, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  {cpr 4633   class class class wbr 5148  cfv 6563  ωcom 7887  2oc2o 8499  cen 8981  Fincfn 8984  Basecbs 17245  0gc0g 17486  NrmSGrpcnsg 19152  SimpGrpcsimpg 20125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-nsg 19155  df-simpg 20126
This theorem is referenced by:  simpgnsgeqd  20136  simpgnsgbid  20138
  Copyright terms: Public domain W3C validator