Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phpeqdOLD | Structured version Visualization version GIF version |
Description: Obsolete version of phpeqd 9036 as of 28-Nov-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phpeqdOLD.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
phpeqdOLD.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
phpeqdOLD.3 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
phpeqdOLD | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phpeqdOLD.3 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | phpeqdOLD.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
3 | phpeqdOLD.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | 3 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊆ 𝐴) |
5 | simpr 486 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
6 | 5 | neqcomd 2746 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴) |
7 | dfpss2 4026 | . . . . . 6 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴)) | |
8 | 4, 6, 7 | sylanbrc 584 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊊ 𝐴) |
9 | php3 9033 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
10 | 2, 8, 9 | syl2an2r 683 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ≺ 𝐴) |
11 | sdomnen 8802 | . . . . 5 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
12 | ensym 8824 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
13 | 11, 12 | nsyl 140 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐵) |
14 | 10, 13 | syl 17 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ≈ 𝐵) |
15 | 14 | ex 414 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵)) |
16 | 1, 15 | mt4d 117 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 ⊊ wpss 3893 class class class wbr 5081 ≈ cen 8761 ≺ csdm 8763 Fincfn 8764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-om 7745 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |