|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > phpeqdOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of phpeqd 9252 as of 28-Nov-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| phpeqdOLD.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) | 
| phpeqdOLD.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | 
| phpeqdOLD.3 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) | 
| Ref | Expression | 
|---|---|
| phpeqdOLD | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | phpeqdOLD.3 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | phpeqdOLD.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 3 | phpeqdOLD.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊆ 𝐴) | 
| 5 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 6 | 5 | neqcomd 2747 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐵 = 𝐴) | 
| 7 | dfpss2 4088 | . . . . . 6 ⊢ (𝐵 ⊊ 𝐴 ↔ (𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴)) | |
| 8 | 4, 6, 7 | sylanbrc 583 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ⊊ 𝐴) | 
| 9 | php3 9249 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
| 10 | 2, 8, 9 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ≺ 𝐴) | 
| 11 | sdomnen 9021 | . . . . 5 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴) | |
| 12 | ensym 9043 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 13 | 11, 12 | nsyl 140 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐵) | 
| 14 | 10, 13 | syl 17 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ≈ 𝐵) | 
| 15 | 14 | ex 412 | . 2 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵)) | 
| 16 | 1, 15 | mt4d 117 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ⊊ wpss 3952 class class class wbr 5143 ≈ cen 8982 ≺ csdm 8984 Fincfn 8985 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |