MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfaba1OLD Structured version   Visualization version   GIF version

Theorem nfaba1OLD 2908
Description: Obsolete version of nfaba1 2907 as of 14-May-2025. (Contributed by Mario Carneiro, 14-Oct-2016.) (Revised by GG, 20-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfaba1OLD 𝑥{𝑦 ∣ ∀𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfaba1OLD
StepHypRef Expression
1 nfa1 2152 . 2 𝑥𝑥𝜑
21nfab 2905 1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wal 1538  {cab 2714  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-nfc 2886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator