MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfaba1g Structured version   Visualization version   GIF version

Theorem nfaba1g 2918
Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2374. See nfaba1 2917 for a version with a disjoint variable condition, but not requiring ax-13 2374. (Contributed by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfaba1g 𝑥{𝑦 ∣ ∀𝑥𝜑}

Proof of Theorem nfaba1g
StepHypRef Expression
1 nfa1 2152 . 2 𝑥𝑥𝜑
21nfabg 2916 1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wal 1540  {cab 2717  wnfc 2889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-10 2141  ax-11 2158  ax-12 2175  ax-13 2374
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-nfc 2891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator