MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfaba1g Structured version   Visualization version   GIF version

Theorem nfaba1g 2906
Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2365. See nfaba1 2905 for a version with a disjoint variable condition, but not requiring ax-13 2365. (Contributed by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfaba1g 𝑥{𝑦 ∣ ∀𝑥𝜑}

Proof of Theorem nfaba1g
StepHypRef Expression
1 nfa1 2140 . 2 𝑥𝑥𝜑
21nfabg 2904 1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wal 1531  {cab 2703  wnfc 2877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2163  ax-13 2365
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-nfc 2879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator