![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfaba1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2371. See nfaba1g 2912 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfaba1 | ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2148 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfab 2909 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1539 {cab 2709 Ⅎwnfc 2883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-or 846 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-nfc 2885 |
This theorem is referenced by: nfopd 4890 nfimad 6068 nfiota1 6497 nffvd 6903 nfunidALT2 37834 nfunidALT 37835 nfopdALT 37836 setrec1 47726 |
Copyright terms: Public domain | W3C validator |