| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfaba1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2374. See nfaba1g 2905 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) Avoid ax-12 2182. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfaba1 | ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2712 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ ∀𝑥𝜑} ↔ [𝑧 / 𝑦]∀𝑥𝜑) | |
| 2 | sbal 2174 | . . . 4 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | |
| 3 | nfa1 2156 | . . . 4 ⊢ Ⅎ𝑥∀𝑥[𝑧 / 𝑦]𝜑 | |
| 4 | 2, 3 | nfxfr 1854 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑦]∀𝑥𝜑 |
| 5 | 1, 4 | nfxfr 1854 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ ∀𝑥𝜑} |
| 6 | 5 | nfci 2883 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1539 [wsb 2067 ∈ wcel 2113 {cab 2711 Ⅎwnfc 2880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2146 ax-11 2162 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-nfc 2882 |
| This theorem is referenced by: nfopd 4843 nfimad 6024 nfiota1 6446 nffvd 6842 nfunidALT2 39091 nfunidALT 39092 nfopdALT 39093 setrec1 49819 |
| Copyright terms: Public domain | W3C validator |