Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfaba1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2372. See nfaba1g 2915 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfaba1 | ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2150 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | nfab 2912 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 {cab 2715 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-nfc 2888 |
This theorem is referenced by: nfopd 4818 nfimad 5967 nfiota1 6378 nffvd 6768 nfunidALT2 36910 nfunidALT 36911 nfopdALT 36912 setrec1 46283 |
Copyright terms: Public domain | W3C validator |