MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfaba1 Structured version   Visualization version   GIF version

Theorem nfaba1 2916
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2380. See nfaba1g 2918 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) Avoid ax-6 1967, ax-7 2007, ax-12 2178. (Revised by SN, 14-May-2025.)
Assertion
Ref Expression
nfaba1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfaba1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-clab 2718 . . 3 (𝑧 ∈ {𝑦 ∣ ∀𝑥𝜑} ↔ [𝑧 / 𝑦]∀𝑥𝜑)
2 sbal 2170 . . . 4 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
3 nfa1 2152 . . . 4 𝑥𝑥[𝑧 / 𝑦]𝜑
42, 3nfxfr 1851 . . 3 𝑥[𝑧 / 𝑦]∀𝑥𝜑
51, 4nfxfr 1851 . 2 𝑥 𝑧 ∈ {𝑦 ∣ ∀𝑥𝜑}
65nfci 2896 1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wal 1535  [wsb 2064  wcel 2108  {cab 2717  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-10 2141  ax-11 2158
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-nfc 2895
This theorem is referenced by:  nfopd  4914  nfimad  6098  nfiota1  6527  nffvd  6932  nfunidALT2  38925  nfunidALT  38926  nfopdALT  38927  setrec1  48783
  Copyright terms: Public domain W3C validator