MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfaba1 Structured version   Visualization version   GIF version

Theorem nfaba1 2903
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2374. See nfaba1g 2905 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) Avoid ax-12 2182. (Revised by SN, 14-May-2025.)
Assertion
Ref Expression
nfaba1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfaba1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-clab 2712 . . 3 (𝑧 ∈ {𝑦 ∣ ∀𝑥𝜑} ↔ [𝑧 / 𝑦]∀𝑥𝜑)
2 sbal 2174 . . . 4 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
3 nfa1 2156 . . . 4 𝑥𝑥[𝑧 / 𝑦]𝜑
42, 3nfxfr 1854 . . 3 𝑥[𝑧 / 𝑦]∀𝑥𝜑
51, 4nfxfr 1854 . 2 𝑥 𝑧 ∈ {𝑦 ∣ ∀𝑥𝜑}
65nfci 2883 1 𝑥{𝑦 ∣ ∀𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wal 1539  [wsb 2067  wcel 2113  {cab 2711  wnfc 2880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2146  ax-11 2162
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-nfc 2882
This theorem is referenced by:  nfopd  4843  nfimad  6024  nfiota1  6446  nffvd  6842  nfunidALT2  39091  nfunidALT  39092  nfopdALT  39093  setrec1  49819
  Copyright terms: Public domain W3C validator