| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfaba1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2371. See nfaba1g 2902 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) Avoid ax-6 1967, ax-7 2008, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfaba1 | ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2709 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ ∀𝑥𝜑} ↔ [𝑧 / 𝑦]∀𝑥𝜑) | |
| 2 | sbal 2170 | . . . 4 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | |
| 3 | nfa1 2152 | . . . 4 ⊢ Ⅎ𝑥∀𝑥[𝑧 / 𝑦]𝜑 | |
| 4 | 2, 3 | nfxfr 1853 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑦]∀𝑥𝜑 |
| 5 | 1, 4 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ ∀𝑥𝜑} |
| 6 | 5 | nfci 2880 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 [wsb 2065 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-10 2142 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-nfc 2879 |
| This theorem is referenced by: nfopd 4857 nfimad 6043 nfiota1 6469 nffvd 6873 nfunidALT2 38969 nfunidALT 38970 nfopdALT 38971 setrec1 49684 |
| Copyright terms: Public domain | W3C validator |