![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfaba1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2380. See nfaba1g 2918 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) Avoid ax-6 1967, ax-7 2007, ax-12 2178. (Revised by SN, 14-May-2025.) |
Ref | Expression |
---|---|
nfaba1 | ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2718 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ ∀𝑥𝜑} ↔ [𝑧 / 𝑦]∀𝑥𝜑) | |
2 | sbal 2170 | . . . 4 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | |
3 | nfa1 2152 | . . . 4 ⊢ Ⅎ𝑥∀𝑥[𝑧 / 𝑦]𝜑 | |
4 | 2, 3 | nfxfr 1851 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑦]∀𝑥𝜑 |
5 | 1, 4 | nfxfr 1851 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ ∀𝑥𝜑} |
6 | 5 | nfci 2896 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1535 [wsb 2064 ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-10 2141 ax-11 2158 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-nfc 2895 |
This theorem is referenced by: nfopd 4914 nfimad 6098 nfiota1 6527 nffvd 6932 nfunidALT2 38925 nfunidALT 38926 nfopdALT 38927 setrec1 48783 |
Copyright terms: Public domain | W3C validator |