MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeud Structured version   Visualization version   GIF version

Theorem nfeud 2592
Description: Bound-variable hypothesis builder for the unique existential quantifier. Deduction version of nfeu 2594. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfeudw 2591 when possible. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfeud.1 𝑦𝜑
nfeud.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfeud (𝜑 → Ⅎ𝑥∃!𝑦𝜓)

Proof of Theorem nfeud
StepHypRef Expression
1 nfeud.1 . 2 𝑦𝜑
2 nfeud.2 . . 3 (𝜑 → Ⅎ𝑥𝜓)
32adantr 481 . 2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
41, 3nfeud2 2590 1 (𝜑 → Ⅎ𝑥∃!𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wnf 1786  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569
This theorem is referenced by:  nfeu  2594
  Copyright terms: Public domain W3C validator