![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeud | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the unique existential quantifier. Deduction version of nfeu 2597. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker nfeudw 2594 when possible. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfeud.1 | ⊢ Ⅎ𝑦𝜑 |
nfeud.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfeud | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeud.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfeud.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
4 | 1, 3 | nfeud2 2593 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 Ⅎwnf 1781 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-mo 2543 df-eu 2572 |
This theorem is referenced by: nfeu 2597 |
Copyright terms: Public domain | W3C validator |