| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeud | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the unique existential quantifier. Deduction version of nfeu 2594. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker nfeudw 2591 when possible. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfeud.1 | ⊢ Ⅎ𝑦𝜑 |
| nfeud.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfeud | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeud.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfeud.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
| 4 | 1, 3 | nfeud2 2590 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 Ⅎwnf 1783 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: nfeu 2594 |
| Copyright terms: Public domain | W3C validator |