Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeud2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by Wolf Lammen, 4-Oct-2018.) (Proof shortened by BJ, 14-Oct-2022.) Usage of this theorem is discouraged because it depends on ax-13 2372. Use nfeudw 2591 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
nfeud2.1 | ⊢ Ⅎ𝑦𝜑 |
nfeud2.2 | ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfeud2 | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2569 | . 2 ⊢ (∃!𝑦𝜓 ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓)) | |
2 | nfeud2.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfeud2.2 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | |
4 | 2, 3 | nfexd2 2446 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
5 | 2, 3 | nfmod2 2558 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
6 | 4, 5 | nfand 1901 | . 2 ⊢ (𝜑 → Ⅎ𝑥(∃𝑦𝜓 ∧ ∃*𝑦𝜓)) |
7 | 1, 6 | nfxfrd 1857 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 |
This theorem is referenced by: nfeud 2592 nfreud 3298 |
Copyright terms: Public domain | W3C validator |