MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeuw Structured version   Visualization version   GIF version

Theorem nfeuw 2587
Description: Bound-variable hypothesis builder for the unique existential quantifier. Version of nfeu 2588 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 8-Mar-1995.) Avoid ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.)
Hypothesis
Ref Expression
nfeuw.1 𝑥𝜑
Assertion
Ref Expression
nfeuw 𝑥∃!𝑦𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfeuw
StepHypRef Expression
1 nftru 1806 . . 3 𝑦
2 nfeuw.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfeudw 2585 . 2 (⊤ → Ⅎ𝑥∃!𝑦𝜑)
54mptru 1548 1 𝑥∃!𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  wnf 1785  ∃!weu 2562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-mo 2534  df-eu 2563
This theorem is referenced by:  nfreuw  3410  eusv2nf  5392  reusv2lem3  5397  bnj1489  34055  setrec2  47693
  Copyright terms: Public domain W3C validator