![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeuw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the unique existential quantifier. Version of nfeu 2592 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by NM, 8-Mar-1995.) Avoid ax-13 2375. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfeuw.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfeuw | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1801 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfeuw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfeudw 2589 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦𝜑) |
5 | 4 | mptru 1544 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 Ⅎwnf 1780 ∃!weu 2566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-10 2139 ax-11 2155 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-mo 2538 df-eu 2567 |
This theorem is referenced by: nfreuw 3412 eusv2nf 5401 reusv2lem3 5406 bnj1489 35049 setrec2 48926 |
Copyright terms: Public domain | W3C validator |