| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeuw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the unique existential quantifier. Version of nfeu 2589 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 8-Mar-1995.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfeuw.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfeuw | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfeuw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | 1, 3 | nfeudw 2586 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦𝜑) |
| 5 | 4 | mptru 1548 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 ∃!weu 2563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 df-eu 2564 |
| This theorem is referenced by: nfreuw 3376 eusv2nf 5331 reusv2lem3 5336 bnj1489 35068 setrec2 49806 |
| Copyright terms: Public domain | W3C validator |