Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeuw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the unique existential quantifier. Version of nfeu 2595 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 8-Mar-1995.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfeuw.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfeuw | ⊢ Ⅎ𝑥∃!𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1810 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfeuw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfeudw 2592 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦𝜑) |
5 | 4 | mptru 1548 | 1 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1542 Ⅎwnf 1789 ∃!weu 2569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-11 2157 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-mo 2541 df-eu 2570 |
This theorem is referenced by: nfreuw 3303 eusv2nf 5321 reusv2lem3 5326 bnj1489 33015 setrec2 46353 |
Copyright terms: Public domain | W3C validator |