MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeuw Structured version   Visualization version   GIF version

Theorem nfeuw 2583
Description: Bound-variable hypothesis builder for the unique existential quantifier. Version of nfeu 2584 with a disjoint variable condition, which does not require ax-13 2367. (Contributed by NM, 8-Mar-1995.) Avoid ax-13 2367. (Revised by Gino Giotto, 10-Jan-2024.)
Hypothesis
Ref Expression
nfeuw.1 𝑥𝜑
Assertion
Ref Expression
nfeuw 𝑥∃!𝑦𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfeuw
StepHypRef Expression
1 nftru 1799 . . 3 𝑦
2 nfeuw.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfeudw 2581 . 2 (⊤ → Ⅎ𝑥∃!𝑦𝜑)
54mptru 1541 1 𝑥∃!𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1535  wnf 1778  ∃!weu 2558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-11 2147  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-mo 2530  df-eu 2559
This theorem is referenced by:  nfreuw  3407  eusv2nf  5395  reusv2lem3  5400  bnj1489  34687  setrec2  48126
  Copyright terms: Public domain W3C validator