Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeudw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the unique existential quantifier. Deduction version of nfeu 2594. Version of nfeud 2592 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 15-Feb-2013.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfeudw.1 | ⊢ Ⅎ𝑦𝜑 |
nfeudw.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfeudw | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2569 | . 2 ⊢ (∃!𝑦𝜓 ↔ (∃𝑦𝜓 ∧ ∃*𝑦𝜓)) | |
2 | nfeudw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfeudw.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
4 | 2, 3 | nfexd 2323 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
5 | 2, 3 | nfmodv 2559 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) |
6 | 4, 5 | nfand 1900 | . 2 ⊢ (𝜑 → Ⅎ𝑥(∃𝑦𝜓 ∧ ∃*𝑦𝜓)) |
7 | 1, 6 | nfxfrd 1856 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1782 Ⅎwnf 1786 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 |
This theorem is referenced by: nfeuw 2593 nfreuwOLD 3306 |
Copyright terms: Public domain | W3C validator |