MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeld Structured version   Visualization version   GIF version

Theorem nfeld 2917
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeld (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfeld
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfclel 2817 . 2 (𝐴𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝐵))
2 nfv 1914 . . 3 𝑦𝜑
3 nfcvd 2906 . . . . 5 (𝜑𝑥𝑦)
4 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeqd 2916 . . . 4 (𝜑 → Ⅎ𝑥 𝑦 = 𝐴)
6 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
76nfcrd 2899 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
85, 7nfand 1897 . . 3 (𝜑 → Ⅎ𝑥(𝑦 = 𝐴𝑦𝐵))
92, 8nfexd 2330 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦 = 𝐴𝑦𝐵))
101, 9nfxfrd 1853 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wnf 1782  wcel 2108  wnfc 2890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1779  df-nf 1783  df-cleq 2729  df-clel 2816  df-nfc 2892
This theorem is referenced by:  nfel  2920  nfneld  3055  nfrald  3372  ralcom2  3377  nfreuwOLD  3426  nfrmowOLD  3427  nfrmod  3432  nfreud  3433  nfrmo  3434  nfsbc1d  3812  nfsbcdw  3815  nfsbcd  3818  sbcrext  3885  nfdisjw  5130  nfdisj  5131  nfbrd  5197  nfriotadw  7403  nfriotad  7406  nfixpw  8964  nfixp  8965  axrepndlem2  10640  axrepnd  10641  axunnd  10643  axpowndlem2  10645  axpowndlem3  10646  axpowndlem4  10647  axpownd  10648  axregndlem2  10650  axinfndlem1  10652  axinfnd  10653  axacndlem4  10657  axacndlem5  10658  axacnd  10659  axnulg  35099
  Copyright terms: Public domain W3C validator