MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeld Structured version   Visualization version   GIF version

Theorem nfeld 2905
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeld (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfeld
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfclel 2805 . 2 (𝐴𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝐵))
2 nfv 1914 . . 3 𝑦𝜑
3 nfcvd 2894 . . . . 5 (𝜑𝑥𝑦)
4 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeqd 2904 . . . 4 (𝜑 → Ⅎ𝑥 𝑦 = 𝐴)
6 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
76nfcrd 2887 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
85, 7nfand 1897 . . 3 (𝜑 → Ⅎ𝑥(𝑦 = 𝐴𝑦𝐵))
92, 8nfexd 2328 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦 = 𝐴𝑦𝐵))
101, 9nfxfrd 1854 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-cleq 2722  df-clel 2804  df-nfc 2880
This theorem is referenced by:  nfel  2908  nfneld  3040  nfrald  3349  ralcom2  3354  nfrmod  3407  nfreud  3408  nfrmo  3409  nfsbc1d  3779  nfsbcdw  3782  nfsbcd  3785  sbcrext  3844  nfdisjw  5094  nfdisj  5095  nfbrd  5161  nfriotadw  7359  nfriotad  7362  nfixpw  8893  nfixp  8894  axrepndlem2  10564  axrepnd  10565  axunnd  10567  axpowndlem2  10569  axpowndlem3  10570  axpowndlem4  10571  axpownd  10572  axregndlem2  10574  axinfndlem1  10576  axinfnd  10577  axacndlem4  10581  axacndlem5  10582  axacnd  10583  axnulg  35090
  Copyright terms: Public domain W3C validator