MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeld Structured version   Visualization version   GIF version

Theorem nfeld 2906
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeld (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfeld
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfclel 2807 . 2 (𝐴𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝐵))
2 nfv 1915 . . 3 𝑦𝜑
3 nfcvd 2895 . . . . 5 (𝜑𝑥𝑦)
4 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeqd 2905 . . . 4 (𝜑 → Ⅎ𝑥 𝑦 = 𝐴)
6 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
76nfcrd 2888 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
85, 7nfand 1898 . . 3 (𝜑 → Ⅎ𝑥(𝑦 = 𝐴𝑦𝐵))
92, 8nfexd 2330 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦 = 𝐴𝑦𝐵))
101, 9nfxfrd 1855 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wnf 1784  wcel 2111  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-cleq 2723  df-clel 2806  df-nfc 2881
This theorem is referenced by:  nfel  2909  nfneld  3041  nfrald  3338  ralcom2  3343  nfrmod  3391  nfreud  3392  nfrmo  3393  nfsbc1d  3754  nfsbcdw  3757  nfsbcd  3760  sbcrext  3819  nfdisjw  5068  nfdisj  5069  nfbrd  5135  nfriotadw  7311  nfriotad  7314  nfixpw  8840  nfixp  8841  axrepndlem2  10484  axrepnd  10485  axunnd  10487  axpowndlem2  10489  axpowndlem3  10490  axpowndlem4  10491  axpownd  10492  axregndlem2  10494  axinfndlem1  10496  axinfnd  10497  axacndlem4  10501  axacndlem5  10502  axacnd  10503  axnulg  35119
  Copyright terms: Public domain W3C validator