![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeld | Structured version Visualization version GIF version |
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfeld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2817 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcvd 2906 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) | |
4 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 3, 4 | nfeqd 2916 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝐴) |
6 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
7 | 6 | nfcrd 2899 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
8 | 5, 7 | nfand 1897 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
9 | 2, 8 | nfexd 2330 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
10 | 1, 9 | nfxfrd 1853 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2108 Ⅎwnfc 2890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1779 df-nf 1783 df-cleq 2729 df-clel 2816 df-nfc 2892 |
This theorem is referenced by: nfel 2920 nfneld 3055 nfrald 3372 ralcom2 3377 nfreuwOLD 3426 nfrmowOLD 3427 nfrmod 3432 nfreud 3433 nfrmo 3434 nfsbc1d 3812 nfsbcdw 3815 nfsbcd 3818 sbcrext 3885 nfdisjw 5130 nfdisj 5131 nfbrd 5197 nfriotadw 7403 nfriotad 7406 nfixpw 8964 nfixp 8965 axrepndlem2 10640 axrepnd 10641 axunnd 10643 axpowndlem2 10645 axpowndlem3 10646 axpowndlem4 10647 axpownd 10648 axregndlem2 10650 axinfndlem1 10652 axinfnd 10653 axacndlem4 10657 axacndlem5 10658 axacnd 10659 axnulg 35099 |
Copyright terms: Public domain | W3C validator |