MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeld Structured version   Visualization version   GIF version

Theorem nfeld 2920
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeld (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfeld
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfclel 2820 . 2 (𝐴𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝐵))
2 nfv 1913 . . 3 𝑦𝜑
3 nfcvd 2909 . . . . 5 (𝜑𝑥𝑦)
4 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeqd 2919 . . . 4 (𝜑 → Ⅎ𝑥 𝑦 = 𝐴)
6 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
76nfcrd 2902 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
85, 7nfand 1896 . . 3 (𝜑 → Ⅎ𝑥(𝑦 = 𝐴𝑦𝐵))
92, 8nfexd 2333 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦 = 𝐴𝑦𝐵))
101, 9nfxfrd 1852 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wnf 1781  wcel 2108  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-cleq 2732  df-clel 2819  df-nfc 2895
This theorem is referenced by:  nfel  2923  nfneld  3061  nfraldwOLD  3328  nfrald  3380  ralcom2  3385  nfreuwOLD  3433  nfrmowOLD  3434  nfrmod  3439  nfreud  3440  nfrmo  3441  nfsbc1d  3822  nfsbcdw  3825  nfsbcd  3828  sbcrext  3895  nfdisjw  5145  nfdisj  5146  nfbrd  5212  nfriotadw  7414  nfriotad  7418  nfixpw  8976  nfixp  8977  axrepndlem2  10664  axrepnd  10665  axunnd  10667  axpowndlem2  10669  axpowndlem3  10670  axpowndlem4  10671  axpownd  10672  axregndlem2  10674  axinfndlem1  10676  axinfnd  10677  axacndlem4  10681  axacndlem5  10682  axacnd  10683  axnulg  35070
  Copyright terms: Public domain W3C validator