Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeld | Structured version Visualization version GIF version |
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfeld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2818 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcvd 2907 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) | |
4 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | 3, 4 | nfeqd 2916 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝐴) |
6 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
7 | 6 | nfcrd 2895 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
8 | 5, 7 | nfand 1901 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
9 | 2, 8 | nfexd 2327 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
10 | 1, 9 | nfxfrd 1857 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-cleq 2730 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: nfel 2920 nfneld 3056 nfraldwOLD 3147 nfrald 3148 ralcom2 3288 nfreud 3298 nfrmod 3299 nfreuw 3300 nfrmow 3301 nfrmo 3303 nfsbc1d 3729 nfsbcdw 3732 nfsbcd 3735 sbcrext 3802 nfdisjw 5047 nfdisj 5048 nfbrd 5116 nfriotadw 7220 nfriotad 7224 nfixpw 8662 nfixp 8663 axrepndlem2 10280 axrepnd 10281 axunnd 10283 axpowndlem2 10285 axpowndlem3 10286 axpowndlem4 10287 axpownd 10288 axregndlem2 10290 axinfndlem1 10292 axinfnd 10293 axacndlem4 10297 axacndlem5 10298 axacnd 10299 |
Copyright terms: Public domain | W3C validator |