MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeld Structured version   Visualization version   GIF version

Theorem nfeld 2917
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeld (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfeld
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfclel 2818 . 2 (𝐴𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝐵))
2 nfv 1918 . . 3 𝑦𝜑
3 nfcvd 2907 . . . . 5 (𝜑𝑥𝑦)
4 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeqd 2916 . . . 4 (𝜑 → Ⅎ𝑥 𝑦 = 𝐴)
6 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
76nfcrd 2895 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
85, 7nfand 1901 . . 3 (𝜑 → Ⅎ𝑥(𝑦 = 𝐴𝑦𝐵))
92, 8nfexd 2327 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦 = 𝐴𝑦𝐵))
101, 9nfxfrd 1857 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wnf 1787  wcel 2108  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-cleq 2730  df-clel 2817  df-nfc 2888
This theorem is referenced by:  nfel  2920  nfneld  3056  nfraldwOLD  3147  nfrald  3148  ralcom2  3288  nfreud  3298  nfrmod  3299  nfreuw  3300  nfrmow  3301  nfrmo  3303  nfsbc1d  3729  nfsbcdw  3732  nfsbcd  3735  sbcrext  3802  nfdisjw  5047  nfdisj  5048  nfbrd  5116  nfriotadw  7220  nfriotad  7224  nfixpw  8662  nfixp  8663  axrepndlem2  10280  axrepnd  10281  axunnd  10283  axpowndlem2  10285  axpowndlem3  10286  axpowndlem4  10287  axpownd  10288  axregndlem2  10290  axinfndlem1  10292  axinfnd  10293  axacndlem4  10297  axacndlem5  10298  axacnd  10299
  Copyright terms: Public domain W3C validator