MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeld Structured version   Visualization version   GIF version

Theorem nfeld 2909
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeld (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfeld
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfclel 2809 . 2 (𝐴𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝐵))
2 nfv 1913 . . 3 𝑦𝜑
3 nfcvd 2898 . . . . 5 (𝜑𝑥𝑦)
4 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeqd 2908 . . . 4 (𝜑 → Ⅎ𝑥 𝑦 = 𝐴)
6 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
76nfcrd 2891 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
85, 7nfand 1896 . . 3 (𝜑 → Ⅎ𝑥(𝑦 = 𝐴𝑦𝐵))
92, 8nfexd 2328 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦 = 𝐴𝑦𝐵))
101, 9nfxfrd 1853 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wnf 1782  wcel 2107  wnfc 2882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783  df-cleq 2726  df-clel 2808  df-nfc 2884
This theorem is referenced by:  nfel  2912  nfneld  3044  nfrald  3355  ralcom2  3360  nfreuwOLD  3409  nfrmowOLD  3410  nfrmod  3415  nfreud  3416  nfrmo  3417  nfsbc1d  3788  nfsbcdw  3791  nfsbcd  3794  sbcrext  3853  nfdisjw  5102  nfdisj  5103  nfbrd  5169  nfriotadw  7377  nfriotad  7380  nfixpw  8937  nfixp  8938  axrepndlem2  10614  axrepnd  10615  axunnd  10617  axpowndlem2  10619  axpowndlem3  10620  axpowndlem4  10621  axpownd  10622  axregndlem2  10624  axinfndlem1  10626  axinfnd  10627  axacndlem4  10631  axacndlem5  10632  axacnd  10633  axnulg  35040
  Copyright terms: Public domain W3C validator