| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeld | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfeld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclel 2809 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcvd 2898 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) | |
| 4 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 3, 4 | nfeqd 2908 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝐴) |
| 6 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 7 | 6 | nfcrd 2891 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 8 | 5, 7 | nfand 1896 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 9 | 2, 8 | nfexd 2328 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 10 | 1, 9 | nfxfrd 1853 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-cleq 2726 df-clel 2808 df-nfc 2884 |
| This theorem is referenced by: nfel 2912 nfneld 3044 nfrald 3355 ralcom2 3360 nfreuwOLD 3409 nfrmowOLD 3410 nfrmod 3415 nfreud 3416 nfrmo 3417 nfsbc1d 3788 nfsbcdw 3791 nfsbcd 3794 sbcrext 3853 nfdisjw 5102 nfdisj 5103 nfbrd 5169 nfriotadw 7377 nfriotad 7380 nfixpw 8937 nfixp 8938 axrepndlem2 10614 axrepnd 10615 axunnd 10617 axpowndlem2 10619 axpowndlem3 10620 axpowndlem4 10621 axpownd 10622 axregndlem2 10624 axinfndlem1 10626 axinfnd 10627 axacndlem4 10631 axacndlem5 10632 axacnd 10633 axnulg 35040 |
| Copyright terms: Public domain | W3C validator |