MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeld Structured version   Visualization version   GIF version

Theorem nfeld 2918
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeld (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfeld
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfclel 2817 . 2 (𝐴𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝐵))
2 nfv 1917 . . 3 𝑦𝜑
3 nfcvd 2908 . . . . 5 (𝜑𝑥𝑦)
4 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
53, 4nfeqd 2917 . . . 4 (𝜑 → Ⅎ𝑥 𝑦 = 𝐴)
6 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
76nfcrd 2896 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
85, 7nfand 1900 . . 3 (𝜑 → Ⅎ𝑥(𝑦 = 𝐴𝑦𝐵))
92, 8nfexd 2323 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦 = 𝐴𝑦𝐵))
101, 9nfxfrd 1856 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wnf 1786  wcel 2106  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-cleq 2730  df-clel 2816  df-nfc 2889
This theorem is referenced by:  nfel  2921  nfneld  3057  nfraldwOLD  3149  nfrald  3150  ralcom2  3290  nfreud  3302  nfrmod  3303  nfreuwOLD  3306  nfrmowOLD  3307  nfrmo  3309  nfsbc1d  3734  nfsbcdw  3737  nfsbcd  3740  sbcrext  3806  nfdisjw  5051  nfdisj  5052  nfbrd  5120  nfriotadw  7240  nfriotad  7244  nfixpw  8704  nfixp  8705  axrepndlem2  10349  axrepnd  10350  axunnd  10352  axpowndlem2  10354  axpowndlem3  10355  axpowndlem4  10356  axpownd  10357  axregndlem2  10359  axinfndlem1  10361  axinfnd  10362  axacndlem4  10366  axacndlem5  10367  axacnd  10368
  Copyright terms: Public domain W3C validator