| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeld | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfeld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcvd 2892 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝑦) | |
| 4 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | 3, 4 | nfeqd 2902 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝐴) |
| 6 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 7 | 6 | nfcrd 2885 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 8 | 5, 7 | nfand 1897 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 9 | 2, 8 | nfexd 2328 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 10 | 1, 9 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-cleq 2721 df-clel 2803 df-nfc 2878 |
| This theorem is referenced by: nfel 2906 nfneld 3038 nfrald 3346 ralcom2 3351 nfrmod 3401 nfreud 3402 nfrmo 3403 nfsbc1d 3771 nfsbcdw 3774 nfsbcd 3777 sbcrext 3836 nfdisjw 5086 nfdisj 5087 nfbrd 5153 nfriotadw 7352 nfriotad 7355 nfixpw 8889 nfixp 8890 axrepndlem2 10546 axrepnd 10547 axunnd 10549 axpowndlem2 10551 axpowndlem3 10552 axpowndlem4 10553 axpownd 10554 axregndlem2 10556 axinfndlem1 10558 axinfnd 10559 axacndlem4 10563 axacndlem5 10564 axacnd 10565 axnulg 35082 |
| Copyright terms: Public domain | W3C validator |