Proof of Theorem ralcom2
Step | Hyp | Ref
| Expression |
1 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
2 | 1 | sps 2180 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
3 | 2 | imbi1d 341 |
. . . . . . . . 9
⊢
(∀𝑥 𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑦 ∈ 𝐴 → 𝜑))) |
4 | 3 | dral1 2439 |
. . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
5 | 4 | bicomd 222 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑦(𝑦 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑))) |
6 | | df-ral 3068 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
7 | | df-ral 3068 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
8 | 5, 6, 7 | 3bitr4g 313 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
9 | 2, 8 | imbi12d 344 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑) ↔ (𝑦 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑))) |
10 | 9 | dral1 2439 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑))) |
11 | | df-ral 3068 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑)) |
12 | | df-ral 3068 |
. . . 4
⊢
(∀𝑦 ∈
𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) |
13 | 10, 11, 12 | 3bitr4g 313 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑)) |
14 | 13 | biimpd 228 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑)) |
15 | | nfnae 2434 |
. . . . 5
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 |
16 | | nfra2 3154 |
. . . . 5
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
17 | 15, 16 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑦(¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) |
18 | | nfnae 2434 |
. . . . . . . 8
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 |
19 | | nfra1 3142 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
20 | 18, 19 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) |
21 | | nfcvf 2935 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) → Ⅎ𝑥𝑦) |
23 | | nfcvd 2907 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) → Ⅎ𝑥𝐴) |
24 | 22, 23 | nfeld 2917 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) → Ⅎ𝑥 𝑦 ∈ 𝐴) |
25 | 20, 24 | nfan1 2196 |
. . . . . 6
⊢
Ⅎ𝑥((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) ∧ 𝑦 ∈ 𝐴) |
26 | | rsp2 3136 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑)) |
27 | 26 | ancomsd 465 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
28 | 27 | expdimp 452 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝜑)) |
29 | 28 | adantll 710 |
. . . . . 6
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝜑)) |
30 | 25, 29 | ralrimi 3139 |
. . . . 5
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) ∧ 𝑦 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 𝜑) |
31 | 30 | ex 412 |
. . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) → (𝑦 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) |
32 | 17, 31 | ralrimi 3139 |
. . 3
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑) |
33 | 32 | ex 412 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑)) |
34 | 14, 33 | pm2.61i 182 |
1
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑) |