MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrex Structured version   Visualization version   GIF version

Theorem nfrex 3347
Description: Bound-variable hypothesis builder for restricted quantification. Usage of this theorem is discouraged because it depends on ax-13 2371. See nfrexw 3295 for a version with a disjoint variable condition, but not requiring ax-13 2371. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfral.1 𝑥𝐴
nfral.2 𝑥𝜑
Assertion
Ref Expression
nfrex 𝑥𝑦𝐴 𝜑

Proof of Theorem nfrex
StepHypRef Expression
1 nftru 1807 . . 3 𝑦
2 nfral.1 . . . 4 𝑥𝐴
32a1i 11 . . 3 (⊤ → 𝑥𝐴)
4 nfral.2 . . . 4 𝑥𝜑
54a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfrexd 3345 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1549 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1543  wnf 1786  wnfc 2884  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-13 2371  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071
This theorem is referenced by:  nfiung  4987
  Copyright terms: Public domain W3C validator