Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrex | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2373. See nfrexg 3244 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfrex.1 | ⊢ Ⅎ𝑥𝐴 |
nfrex.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrex | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfrex.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfrex.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexd 3241 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1546 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1786 Ⅎwnfc 2888 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-10 2138 ax-11 2155 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 |
This theorem is referenced by: nfiun 4955 rexopabb 5442 nffr 5564 abrexex2g 7816 indexfi 9136 nfoi 9282 ixpiunwdom 9358 hsmexlem2 10192 iunfo 10304 iundom2g 10305 reclem2pr 10813 nfwrd 14255 nfsum1 15410 nfsum 15411 nfsumOLD 15412 nfcprod1 15629 nfcprod 15630 ptclsg 22775 iunmbl2 24730 mbfsup 24837 limciun 25067 opreu2reuALT 30834 iundisjf 30937 xrofsup 31099 locfinreflem 31799 esum2d 32070 bnj873 32913 bnj1014 32950 bnj1123 32975 bnj1307 33012 bnj1445 33033 bnj1446 33034 bnj1467 33043 bnj1463 33044 poimirlem24 35810 poimirlem26 35812 poimirlem27 35813 indexa 35900 filbcmb 35907 sdclem2 35909 sdclem1 35910 fdc1 35913 sbcrexgOLD 40614 rexrabdioph 40623 rexfrabdioph 40624 elnn0rabdioph 40632 dvdsrabdioph 40639 disjrnmpt2 42733 rnmptbdlem 42808 infrnmptle 42970 infxrunb3rnmpt 42975 climinff 43159 xlimmnfv 43382 xlimpnfv 43386 cncfshift 43422 stoweidlem53 43601 stoweidlem57 43605 fourierdlem48 43702 fourierdlem73 43727 sge0gerp 43940 sge0resplit 43951 sge0reuz 43992 meaiuninc3v 44029 smfsup 44358 smfsupmpt 44359 smfinf 44362 smfinfmpt 44363 cbvrex2 44607 2reu8i 44616 mogoldbb 45248 |
Copyright terms: Public domain | W3C validator |