Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrex | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2372. See nfrexg 3238 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfrex.1 | ⊢ Ⅎ𝑥𝐴 |
nfrex.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrex | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1808 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfrex.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfrex.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexd 3235 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1546 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1787 Ⅎwnfc 2886 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 |
This theorem is referenced by: nfiun 4951 rexopabb 5434 nffr 5554 abrexex2g 7780 indexfi 9057 nfoi 9203 ixpiunwdom 9279 hsmexlem2 10114 iunfo 10226 iundom2g 10227 reclem2pr 10735 nfwrd 14174 nfsum1 15329 nfsum 15330 nfsumOLD 15331 nfcprod1 15548 nfcprod 15549 ptclsg 22674 iunmbl2 24626 mbfsup 24733 limciun 24963 opreu2reuALT 30726 iundisjf 30829 xrofsup 30992 locfinreflem 31692 esum2d 31961 bnj873 32804 bnj1014 32841 bnj1123 32866 bnj1307 32903 bnj1445 32924 bnj1446 32925 bnj1467 32934 bnj1463 32935 poimirlem24 35728 poimirlem26 35730 poimirlem27 35731 indexa 35818 filbcmb 35825 sdclem2 35827 sdclem1 35828 fdc1 35831 sbcrexgOLD 40523 rexrabdioph 40532 rexfrabdioph 40533 elnn0rabdioph 40541 dvdsrabdioph 40548 disjrnmpt2 42615 rnmptbdlem 42690 infrnmptle 42853 infxrunb3rnmpt 42858 climinff 43042 xlimmnfv 43265 xlimpnfv 43269 cncfshift 43305 stoweidlem53 43484 stoweidlem57 43488 fourierdlem48 43585 fourierdlem73 43610 sge0gerp 43823 sge0resplit 43834 sge0reuz 43875 meaiuninc3v 43912 smfsup 44234 smfsupmpt 44235 smfinf 44238 smfinfmpt 44239 cbvrex2 44483 2reu8i 44492 mogoldbb 45125 |
Copyright terms: Public domain | W3C validator |