![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrex | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) |
Ref | Expression |
---|---|
nfrex.1 | ⊢ Ⅎ𝑥𝐴 |
nfrex.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrex | ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1848 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfrex.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfrex.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfrexd 3187 | . 2 ⊢ (⊤ → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1609 | 1 ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1602 Ⅎwnf 1827 Ⅎwnfc 2919 ∃wrex 3091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 |
This theorem is referenced by: r19.12 3248 r19.12OLD 3249 nfuni 4677 nfiun 4781 nffr 5329 abrexex2g 7422 indexfi 8562 nfoi 8708 ixpiunwdom 8785 hsmexlem2 9584 iunfo 9696 iundom2g 9697 reclem2pr 10205 nfwrd 13632 nfsum1 14828 nfsum 14829 nfcprod1 15043 nfcprod 15044 ptclsg 21827 iunmbl2 23761 mbfsup 23868 limciun 24095 iundisjf 29965 xrofsup 30098 locfinreflem 30505 esum2d 30753 bnj873 31593 bnj1014 31629 bnj1123 31653 bnj1307 31690 bnj1445 31711 bnj1446 31712 bnj1467 31721 bnj1463 31722 cnfinltrel 33836 poimirlem24 34059 poimirlem26 34061 poimirlem27 34062 indexa 34153 filbcmb 34160 sdclem2 34162 sdclem1 34163 fdc1 34166 sbcrexgOLD 38309 rexrabdioph 38318 rexfrabdioph 38319 elnn0rabdioph 38327 dvdsrabdioph 38334 disjrnmpt2 40298 rnmptbdlem 40381 infrnmptle 40556 infxrunb3rnmpt 40561 climinff 40751 xlimmnfv 40974 xlimpnfv 40978 cncfshift 41015 stoweidlem53 41197 stoweidlem57 41201 fourierdlem48 41298 fourierdlem73 41323 sge0gerp 41536 sge0resplit 41547 sge0reuz 41588 meaiuninc3v 41625 smfsup 41947 smfsupmpt 41948 smfinf 41951 smfinfmpt 41952 cbvrex2 42132 2reu8i 42154 mogoldbb 42698 |
Copyright terms: Public domain | W3C validator |