MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfralwOLD Structured version   Visualization version   GIF version

Theorem nfralwOLD 3310
Description: Obsolete version of nfralw 3309 as of 13-Dec-2024. (Contributed by NM, 1-Sep-1999.) (Revised by GG, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfralw.1 𝑥𝐴
nfralw.2 𝑥𝜑
Assertion
Ref Expression
nfralwOLD 𝑥𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfralwOLD
StepHypRef Expression
1 nftru 1801 . . 3 𝑦
2 nfralw.1 . . . 4 𝑥𝐴
32a1i 11 . . 3 (⊤ → 𝑥𝐴)
4 nfralw.2 . . . 4 𝑥𝜑
54a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfraldw 3307 . 2 (⊤ → Ⅎ𝑥𝑦𝐴 𝜑)
76mptru 1544 1 𝑥𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1538  wnf 1780  wnfc 2888  wral 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-10 2139  ax-11 2155  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-clel 2814  df-nfc 2890  df-ral 3060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator