MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsabg Structured version   Visualization version   GIF version

Theorem nfsabg 2716
Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2365. See nfsab 2715 for a version with more disjoint variable conditions, but not requiring ax-13 2365. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfsabg.1 𝑥𝜑
Assertion
Ref Expression
nfsabg 𝑥 𝑧 ∈ {𝑦𝜑}
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsabg
StepHypRef Expression
1 nfsabg.1 . . . 4 𝑥𝜑
21nf5ri 2183 . . 3 (𝜑 → ∀𝑥𝜑)
32hbabg 2714 . 2 (𝑧 ∈ {𝑦𝜑} → ∀𝑥 𝑧 ∈ {𝑦𝜑})
43nf5i 2134 1 𝑥 𝑧 ∈ {𝑦𝜑}
Colors of variables: wff setvar class
Syntax hints:  wnf 1777  wcel 2098  {cab 2702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2166  ax-13 2365
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703
This theorem is referenced by:  nfabg  2898
  Copyright terms: Public domain W3C validator