![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfabg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2370. See nfab 2908 for a version with more disjoint variable conditions, but not requiring ax-13 2370. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfabg.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfabg | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfabg.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsabg 2722 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2885 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1784 {cab 2708 Ⅎwnfc 2882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-11 2153 ax-12 2170 ax-13 2370 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-nfc 2884 |
This theorem is referenced by: nfaba1g 2911 nfiung 5029 nfiing 5030 |
Copyright terms: Public domain | W3C validator |