MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfabg Structured version   Visualization version   GIF version

Theorem nfabg 2913
Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfab 2912 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfabg.1 𝑥𝜑
Assertion
Ref Expression
nfabg 𝑥{𝑦𝜑}

Proof of Theorem nfabg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfabg.1 . . 3 𝑥𝜑
21nfsabg 2729 . 2 𝑥 𝑧 ∈ {𝑦𝜑}
32nfci 2889 1 𝑥{𝑦𝜑}
Colors of variables: wff setvar class
Syntax hints:  wnf 1787  {cab 2715  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-nfc 2888
This theorem is referenced by:  nfaba1g  2915  nfiung  4953  nfiing  4954
  Copyright terms: Public domain W3C validator