Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nfs1t Structured version   Visualization version   GIF version

Theorem wl-nfs1t 37491
Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Closed form of nfs1 2496. (Contributed by Wolf Lammen, 27-Jul-2019.)
Assertion
Ref Expression
wl-nfs1t (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)

Proof of Theorem wl-nfs1t
StepHypRef Expression
1 sbequ12r 2253 . . . . . 6 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
21equcoms 2019 . . . . 5 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
32sps 2186 . . . 4 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
43drnf1 2451 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥[𝑦 / 𝑥]𝜑 ↔ Ⅎ𝑦𝜑))
54biimprd 248 . 2 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑))
6 nfsb2 2491 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
76a1d 25 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑))
85, 7pm2.61i 182 1 (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1535  wnf 1781  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by:  wl-sb8t  37506
  Copyright terms: Public domain W3C validator