| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nfs1t | Structured version Visualization version GIF version | ||
| Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Closed form of nfs1 2492. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| wl-nfs1t | ⊢ (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12r 2252 | . . . . . 6 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 2 | 1 | equcoms 2019 | . . . . 5 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
| 3 | 2 | sps 2185 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) |
| 4 | 3 | drnf1 2447 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥[𝑦 / 𝑥]𝜑 ↔ Ⅎ𝑦𝜑)) |
| 5 | 4 | biimprd 248 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)) |
| 6 | nfsb2 2487 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | |
| 7 | 6 | a1d 25 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)) |
| 8 | 5, 7 | pm2.61i 182 | 1 ⊢ (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: wl-sb8t 37570 |
| Copyright terms: Public domain | W3C validator |