Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellimcabssub0 Structured version   Visualization version   GIF version

Theorem ellimcabssub0 43158
Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ellimcabssub0.f 𝐹 = (𝑥𝐴𝐵)
ellimcabssub0.g 𝐺 = (𝑥𝐴 ↦ (𝐵𝐶))
ellimcabssub0.a (𝜑𝐴 ⊆ ℂ)
ellimcabssub0.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
ellimcabssub0.p (𝜑𝐷 ∈ ℂ)
ellimcabssub0.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
ellimcabssub0 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ 0 ∈ (𝐺 lim 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem ellimcabssub0
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimcabssub0.c . . . 4 (𝜑𝐶 ∈ ℂ)
2 0cnd 10968 . . . 4 (𝜑 → 0 ∈ ℂ)
31, 22thd 264 . . 3 (𝜑 → (𝐶 ∈ ℂ ↔ 0 ∈ ℂ))
4 ellimcabssub0.b . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
51adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
64, 5subcld 11332 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
7 ellimcabssub0.g . . . . . . . . . . . . 13 𝐺 = (𝑥𝐴 ↦ (𝐵𝐶))
86, 7fmptd 6988 . . . . . . . . . . . 12 (𝜑𝐺:𝐴⟶ℂ)
98ffvelrnda 6961 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℂ)
109subid1d 11321 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝐺𝑧) − 0) = (𝐺𝑧))
11 simpr 485 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧𝐴)
12 csbov1g 7320 . . . . . . . . . . . . 13 (𝑧 ∈ V → 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶))
1312elv 3438 . . . . . . . . . . . 12 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
14 sban 2083 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝑥𝐴))
15 nfv 1917 . . . . . . . . . . . . . . . . . . 19 𝑥𝜑
1615sbf 2263 . . . . . . . . . . . . . . . . . 18 ([𝑧 / 𝑥]𝜑𝜑)
17 clelsb1 2866 . . . . . . . . . . . . . . . . . 18 ([𝑧 / 𝑥]𝑥𝐴𝑧𝐴)
1816, 17anbi12i 627 . . . . . . . . . . . . . . . . 17 (([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝑥𝐴) ↔ (𝜑𝑧𝐴))
1914, 18bitri 274 . . . . . . . . . . . . . . . 16 ([𝑧 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑧𝐴))
204nfth 1804 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
2120sbf 2263 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥]((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ))
22 sbim 2300 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥]((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑧 / 𝑥](𝜑𝑥𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
2321, 22sylbb1 236 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) → ([𝑧 / 𝑥](𝜑𝑥𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
2419, 23syl5bir 242 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) → ((𝜑𝑧𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
254, 24ax-mp 5 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ)
26 sbsbc 3720 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ [𝑧 / 𝑥]𝐵 ∈ ℂ)
27 sbcel1g 4347 . . . . . . . . . . . . . . . 16 (𝑧 ∈ V → ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ))
2827elv 3438 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ)
2926, 28bitri 274 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ)
3025, 29sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → 𝑧 / 𝑥𝐵 ∈ ℂ)
311adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → 𝐶 ∈ ℂ)
3230, 31subcld 11332 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝑧 / 𝑥𝐵𝐶) ∈ ℂ)
3313, 32eqeltrid 2843 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) ∈ ℂ)
347fvmpts 6878 . . . . . . . . . . 11 ((𝑧𝐴𝑧 / 𝑥(𝐵𝐶) ∈ ℂ) → (𝐺𝑧) = 𝑧 / 𝑥(𝐵𝐶))
3511, 33, 34syl2anc 584 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐺𝑧) = 𝑧 / 𝑥(𝐵𝐶))
36 ellimcabssub0.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝐵)
3736fvmpts 6878 . . . . . . . . . . . . 13 ((𝑧𝐴𝑧 / 𝑥𝐵 ∈ ℂ) → (𝐹𝑧) = 𝑧 / 𝑥𝐵)
3811, 30, 37syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝑧 / 𝑥𝐵)
3938oveq1d 7290 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = (𝑧 / 𝑥𝐵𝐶))
4013, 39eqtr4id 2797 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) = ((𝐹𝑧) − 𝐶))
4110, 35, 403eqtrrd 2783 . . . . . . . . 9 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = ((𝐺𝑧) − 0))
4241fveq2d 6778 . . . . . . . 8 ((𝜑𝑧𝐴) → (abs‘((𝐹𝑧) − 𝐶)) = (abs‘((𝐺𝑧) − 0)))
4342breq1d 5084 . . . . . . 7 ((𝜑𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑦 ↔ (abs‘((𝐺𝑧) − 0)) < 𝑦))
4443imbi2d 341 . . . . . 6 ((𝜑𝑧𝐴) → (((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4544ralbidva 3111 . . . . 5 (𝜑 → (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4645rexbidv 3226 . . . 4 (𝜑 → (∃𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∃𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4746ralbidv 3112 . . 3 (𝜑 → (∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
483, 47anbi12d 631 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦)) ↔ (0 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦))))
494, 36fmptd 6988 . . 3 (𝜑𝐹:𝐴⟶ℂ)
50 ellimcabssub0.a . . 3 (𝜑𝐴 ⊆ ℂ)
51 ellimcabssub0.p . . 3 (𝜑𝐷 ∈ ℂ)
5249, 50, 51ellimc3 25043 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦))))
538, 50, 51ellimc3 25043 . 2 (𝜑 → (0 ∈ (𝐺 lim 𝐷) ↔ (0 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦))))
5448, 52, 533bitr4d 311 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ 0 ∈ (𝐺 lim 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  [wsb 2067  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  [wsbc 3716  csb 3832  wss 3887   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871   < clt 11009  cmin 11205  +crp 12730  abscabs 14945   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cnp 22379  df-xms 23473  df-ms 23474  df-limc 25030
This theorem is referenced by:  reclimc  43194
  Copyright terms: Public domain W3C validator