Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellimcabssub0 Structured version   Visualization version   GIF version

Theorem ellimcabssub0 43112
Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ellimcabssub0.f 𝐹 = (𝑥𝐴𝐵)
ellimcabssub0.g 𝐺 = (𝑥𝐴 ↦ (𝐵𝐶))
ellimcabssub0.a (𝜑𝐴 ⊆ ℂ)
ellimcabssub0.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
ellimcabssub0.p (𝜑𝐷 ∈ ℂ)
ellimcabssub0.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
ellimcabssub0 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ 0 ∈ (𝐺 lim 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem ellimcabssub0
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimcabssub0.c . . . 4 (𝜑𝐶 ∈ ℂ)
2 0cnd 10952 . . . 4 (𝜑 → 0 ∈ ℂ)
31, 22thd 264 . . 3 (𝜑 → (𝐶 ∈ ℂ ↔ 0 ∈ ℂ))
4 ellimcabssub0.b . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
51adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
64, 5subcld 11315 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
7 ellimcabssub0.g . . . . . . . . . . . . 13 𝐺 = (𝑥𝐴 ↦ (𝐵𝐶))
86, 7fmptd 6982 . . . . . . . . . . . 12 (𝜑𝐺:𝐴⟶ℂ)
98ffvelrnda 6955 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℂ)
109subid1d 11304 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝐺𝑧) − 0) = (𝐺𝑧))
11 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧𝐴)
12 csbov1g 7313 . . . . . . . . . . . . 13 (𝑧 ∈ V → 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶))
1312elv 3436 . . . . . . . . . . . 12 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
14 sban 2086 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝑥𝐴))
15 nfv 1920 . . . . . . . . . . . . . . . . . . 19 𝑥𝜑
1615sbf 2266 . . . . . . . . . . . . . . . . . 18 ([𝑧 / 𝑥]𝜑𝜑)
17 clelsb1 2867 . . . . . . . . . . . . . . . . . 18 ([𝑧 / 𝑥]𝑥𝐴𝑧𝐴)
1816, 17anbi12i 626 . . . . . . . . . . . . . . . . 17 (([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝑥𝐴) ↔ (𝜑𝑧𝐴))
1914, 18bitri 274 . . . . . . . . . . . . . . . 16 ([𝑧 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑧𝐴))
204nfth 1807 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
2120sbf 2266 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥]((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ))
22 sbim 2303 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥]((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑧 / 𝑥](𝜑𝑥𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
2321, 22sylbb1 236 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) → ([𝑧 / 𝑥](𝜑𝑥𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
2419, 23syl5bir 242 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) → ((𝜑𝑧𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
254, 24ax-mp 5 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ)
26 sbsbc 3723 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ [𝑧 / 𝑥]𝐵 ∈ ℂ)
27 sbcel1g 4352 . . . . . . . . . . . . . . . 16 (𝑧 ∈ V → ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ))
2827elv 3436 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ)
2926, 28bitri 274 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ)
3025, 29sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → 𝑧 / 𝑥𝐵 ∈ ℂ)
311adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → 𝐶 ∈ ℂ)
3230, 31subcld 11315 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝑧 / 𝑥𝐵𝐶) ∈ ℂ)
3313, 32eqeltrid 2844 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) ∈ ℂ)
347fvmpts 6872 . . . . . . . . . . 11 ((𝑧𝐴𝑧 / 𝑥(𝐵𝐶) ∈ ℂ) → (𝐺𝑧) = 𝑧 / 𝑥(𝐵𝐶))
3511, 33, 34syl2anc 583 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐺𝑧) = 𝑧 / 𝑥(𝐵𝐶))
36 ellimcabssub0.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝐵)
3736fvmpts 6872 . . . . . . . . . . . . 13 ((𝑧𝐴𝑧 / 𝑥𝐵 ∈ ℂ) → (𝐹𝑧) = 𝑧 / 𝑥𝐵)
3811, 30, 37syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝑧 / 𝑥𝐵)
3938oveq1d 7283 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = (𝑧 / 𝑥𝐵𝐶))
4013, 39eqtr4id 2798 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) = ((𝐹𝑧) − 𝐶))
4110, 35, 403eqtrrd 2784 . . . . . . . . 9 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = ((𝐺𝑧) − 0))
4241fveq2d 6772 . . . . . . . 8 ((𝜑𝑧𝐴) → (abs‘((𝐹𝑧) − 𝐶)) = (abs‘((𝐺𝑧) − 0)))
4342breq1d 5088 . . . . . . 7 ((𝜑𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑦 ↔ (abs‘((𝐺𝑧) − 0)) < 𝑦))
4443imbi2d 340 . . . . . 6 ((𝜑𝑧𝐴) → (((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4544ralbidva 3121 . . . . 5 (𝜑 → (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4645rexbidv 3227 . . . 4 (𝜑 → (∃𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∃𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4746ralbidv 3122 . . 3 (𝜑 → (∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
483, 47anbi12d 630 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦)) ↔ (0 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦))))
494, 36fmptd 6982 . . 3 (𝜑𝐹:𝐴⟶ℂ)
50 ellimcabssub0.a . . 3 (𝜑𝐴 ⊆ ℂ)
51 ellimcabssub0.p . . 3 (𝜑𝐷 ∈ ℂ)
5249, 50, 51ellimc3 25024 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦))))
538, 50, 51ellimc3 25024 . 2 (𝜑 → (0 ∈ (𝐺 lim 𝐷) ↔ (0 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦))))
5448, 52, 533bitr4d 310 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ 0 ∈ (𝐺 lim 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  [wsb 2070  wcel 2109  wne 2944  wral 3065  wrex 3066  Vcvv 3430  [wsbc 3719  csb 3836  wss 3891   class class class wbr 5078  cmpt 5161  cfv 6430  (class class class)co 7268  cc 10853  0cc0 10855   < clt 10993  cmin 11188  +crp 12712  abscabs 14926   lim climc 25007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fi 9131  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-fz 13222  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-mulr 16957  df-starv 16958  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-rest 17114  df-topn 17115  df-topgen 17135  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cnp 22360  df-xms 23454  df-ms 23455  df-limc 25011
This theorem is referenced by:  reclimc  43148
  Copyright terms: Public domain W3C validator