Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellimcabssub0 Structured version   Visualization version   GIF version

Theorem ellimcabssub0 45727
Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ellimcabssub0.f 𝐹 = (𝑥𝐴𝐵)
ellimcabssub0.g 𝐺 = (𝑥𝐴 ↦ (𝐵𝐶))
ellimcabssub0.a (𝜑𝐴 ⊆ ℂ)
ellimcabssub0.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
ellimcabssub0.p (𝜑𝐷 ∈ ℂ)
ellimcabssub0.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
ellimcabssub0 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ 0 ∈ (𝐺 lim 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem ellimcabssub0
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimcabssub0.c . . . 4 (𝜑𝐶 ∈ ℂ)
2 0cnd 11105 . . . 4 (𝜑 → 0 ∈ ℂ)
31, 22thd 265 . . 3 (𝜑 → (𝐶 ∈ ℂ ↔ 0 ∈ ℂ))
4 ellimcabssub0.b . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
51adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
64, 5subcld 11472 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
7 ellimcabssub0.g . . . . . . . . . . . . 13 𝐺 = (𝑥𝐴 ↦ (𝐵𝐶))
86, 7fmptd 7047 . . . . . . . . . . . 12 (𝜑𝐺:𝐴⟶ℂ)
98ffvelcdmda 7017 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℂ)
109subid1d 11461 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝐺𝑧) − 0) = (𝐺𝑧))
11 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧𝐴)
12 csbov1g 7393 . . . . . . . . . . . . 13 (𝑧 ∈ V → 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶))
1312elv 3441 . . . . . . . . . . . 12 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
14 sban 2083 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝑥𝐴))
15 nfv 1915 . . . . . . . . . . . . . . . . . . 19 𝑥𝜑
1615sbf 2273 . . . . . . . . . . . . . . . . . 18 ([𝑧 / 𝑥]𝜑𝜑)
17 clelsb1 2858 . . . . . . . . . . . . . . . . . 18 ([𝑧 / 𝑥]𝑥𝐴𝑧𝐴)
1816, 17anbi12i 628 . . . . . . . . . . . . . . . . 17 (([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝑥𝐴) ↔ (𝜑𝑧𝐴))
1914, 18bitri 275 . . . . . . . . . . . . . . . 16 ([𝑧 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑧𝐴))
204nfth 1802 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
2120sbf 2273 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥]((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ))
22 sbim 2305 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥]((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑧 / 𝑥](𝜑𝑥𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
2321, 22sylbb1 237 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) → ([𝑧 / 𝑥](𝜑𝑥𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
2419, 23biimtrrid 243 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) → ((𝜑𝑧𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
254, 24ax-mp 5 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ)
26 sbsbc 3740 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ [𝑧 / 𝑥]𝐵 ∈ ℂ)
27 sbcel1g 4363 . . . . . . . . . . . . . . . 16 (𝑧 ∈ V → ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ))
2827elv 3441 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ)
2926, 28bitri 275 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ)
3025, 29sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → 𝑧 / 𝑥𝐵 ∈ ℂ)
311adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → 𝐶 ∈ ℂ)
3230, 31subcld 11472 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝑧 / 𝑥𝐵𝐶) ∈ ℂ)
3313, 32eqeltrid 2835 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) ∈ ℂ)
347fvmpts 6932 . . . . . . . . . . 11 ((𝑧𝐴𝑧 / 𝑥(𝐵𝐶) ∈ ℂ) → (𝐺𝑧) = 𝑧 / 𝑥(𝐵𝐶))
3511, 33, 34syl2anc 584 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐺𝑧) = 𝑧 / 𝑥(𝐵𝐶))
36 ellimcabssub0.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝐵)
3736fvmpts 6932 . . . . . . . . . . . . 13 ((𝑧𝐴𝑧 / 𝑥𝐵 ∈ ℂ) → (𝐹𝑧) = 𝑧 / 𝑥𝐵)
3811, 30, 37syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝑧 / 𝑥𝐵)
3938oveq1d 7361 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = (𝑧 / 𝑥𝐵𝐶))
4013, 39eqtr4id 2785 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) = ((𝐹𝑧) − 𝐶))
4110, 35, 403eqtrrd 2771 . . . . . . . . 9 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = ((𝐺𝑧) − 0))
4241fveq2d 6826 . . . . . . . 8 ((𝜑𝑧𝐴) → (abs‘((𝐹𝑧) − 𝐶)) = (abs‘((𝐺𝑧) − 0)))
4342breq1d 5099 . . . . . . 7 ((𝜑𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑦 ↔ (abs‘((𝐺𝑧) − 0)) < 𝑦))
4443imbi2d 340 . . . . . 6 ((𝜑𝑧𝐴) → (((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4544ralbidva 3153 . . . . 5 (𝜑 → (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4645rexbidv 3156 . . . 4 (𝜑 → (∃𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∃𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4746ralbidv 3155 . . 3 (𝜑 → (∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
483, 47anbi12d 632 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦)) ↔ (0 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦))))
494, 36fmptd 7047 . . 3 (𝜑𝐹:𝐴⟶ℂ)
50 ellimcabssub0.a . . 3 (𝜑𝐴 ⊆ ℂ)
51 ellimcabssub0.p . . 3 (𝜑𝐷 ∈ ℂ)
5249, 50, 51ellimc3 25807 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦))))
538, 50, 51ellimc3 25807 . 2 (𝜑 → (0 ∈ (𝐺 lim 𝐷) ↔ (0 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦))))
5448, 52, 533bitr4d 311 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ 0 ∈ (𝐺 lim 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  [wsb 2067  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  [wsbc 3736  csb 3845  wss 3897   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006   < clt 11146  cmin 11344  +crp 12890  abscabs 15141   lim climc 25790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cnp 23143  df-xms 24235  df-ms 24236  df-limc 25794
This theorem is referenced by:  reclimc  45761
  Copyright terms: Public domain W3C validator