Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellimcabssub0 Structured version   Visualization version   GIF version

Theorem ellimcabssub0 45572
Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ellimcabssub0.f 𝐹 = (𝑥𝐴𝐵)
ellimcabssub0.g 𝐺 = (𝑥𝐴 ↦ (𝐵𝐶))
ellimcabssub0.a (𝜑𝐴 ⊆ ℂ)
ellimcabssub0.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
ellimcabssub0.p (𝜑𝐷 ∈ ℂ)
ellimcabssub0.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
ellimcabssub0 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ 0 ∈ (𝐺 lim 𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem ellimcabssub0
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimcabssub0.c . . . 4 (𝜑𝐶 ∈ ℂ)
2 0cnd 11251 . . . 4 (𝜑 → 0 ∈ ℂ)
31, 22thd 265 . . 3 (𝜑 → (𝐶 ∈ ℂ ↔ 0 ∈ ℂ))
4 ellimcabssub0.b . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
51adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
64, 5subcld 11617 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
7 ellimcabssub0.g . . . . . . . . . . . . 13 𝐺 = (𝑥𝐴 ↦ (𝐵𝐶))
86, 7fmptd 7133 . . . . . . . . . . . 12 (𝜑𝐺:𝐴⟶ℂ)
98ffvelcdmda 7103 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℂ)
109subid1d 11606 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝐺𝑧) − 0) = (𝐺𝑧))
11 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧𝐴)
12 csbov1g 7477 . . . . . . . . . . . . 13 (𝑧 ∈ V → 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶))
1312elv 3482 . . . . . . . . . . . 12 𝑧 / 𝑥(𝐵𝐶) = (𝑧 / 𝑥𝐵𝐶)
14 sban 2077 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝑥𝐴))
15 nfv 1911 . . . . . . . . . . . . . . . . . . 19 𝑥𝜑
1615sbf 2268 . . . . . . . . . . . . . . . . . 18 ([𝑧 / 𝑥]𝜑𝜑)
17 clelsb1 2865 . . . . . . . . . . . . . . . . . 18 ([𝑧 / 𝑥]𝑥𝐴𝑧𝐴)
1816, 17anbi12i 628 . . . . . . . . . . . . . . . . 17 (([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝑥𝐴) ↔ (𝜑𝑧𝐴))
1914, 18bitri 275 . . . . . . . . . . . . . . . 16 ([𝑧 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑧𝐴))
204nfth 1797 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
2120sbf 2268 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥]((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ))
22 sbim 2301 . . . . . . . . . . . . . . . . 17 ([𝑧 / 𝑥]((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑧 / 𝑥](𝜑𝑥𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
2321, 22sylbb1 237 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) → ([𝑧 / 𝑥](𝜑𝑥𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
2419, 23biimtrrid 243 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) → 𝐵 ∈ ℂ) → ((𝜑𝑧𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ))
254, 24ax-mp 5 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → [𝑧 / 𝑥]𝐵 ∈ ℂ)
26 sbsbc 3794 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ [𝑧 / 𝑥]𝐵 ∈ ℂ)
27 sbcel1g 4421 . . . . . . . . . . . . . . . 16 (𝑧 ∈ V → ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ))
2827elv 3482 . . . . . . . . . . . . . . 15 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ)
2926, 28bitri 275 . . . . . . . . . . . . . 14 ([𝑧 / 𝑥]𝐵 ∈ ℂ ↔ 𝑧 / 𝑥𝐵 ∈ ℂ)
3025, 29sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → 𝑧 / 𝑥𝐵 ∈ ℂ)
311adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → 𝐶 ∈ ℂ)
3230, 31subcld 11617 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝑧 / 𝑥𝐵𝐶) ∈ ℂ)
3313, 32eqeltrid 2842 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) ∈ ℂ)
347fvmpts 7018 . . . . . . . . . . 11 ((𝑧𝐴𝑧 / 𝑥(𝐵𝐶) ∈ ℂ) → (𝐺𝑧) = 𝑧 / 𝑥(𝐵𝐶))
3511, 33, 34syl2anc 584 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐺𝑧) = 𝑧 / 𝑥(𝐵𝐶))
36 ellimcabssub0.f . . . . . . . . . . . . . 14 𝐹 = (𝑥𝐴𝐵)
3736fvmpts 7018 . . . . . . . . . . . . 13 ((𝑧𝐴𝑧 / 𝑥𝐵 ∈ ℂ) → (𝐹𝑧) = 𝑧 / 𝑥𝐵)
3811, 30, 37syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → (𝐹𝑧) = 𝑧 / 𝑥𝐵)
3938oveq1d 7445 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = (𝑧 / 𝑥𝐵𝐶))
4013, 39eqtr4id 2793 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 / 𝑥(𝐵𝐶) = ((𝐹𝑧) − 𝐶))
4110, 35, 403eqtrrd 2779 . . . . . . . . 9 ((𝜑𝑧𝐴) → ((𝐹𝑧) − 𝐶) = ((𝐺𝑧) − 0))
4241fveq2d 6910 . . . . . . . 8 ((𝜑𝑧𝐴) → (abs‘((𝐹𝑧) − 𝐶)) = (abs‘((𝐺𝑧) − 0)))
4342breq1d 5157 . . . . . . 7 ((𝜑𝑧𝐴) → ((abs‘((𝐹𝑧) − 𝐶)) < 𝑦 ↔ (abs‘((𝐺𝑧) − 0)) < 𝑦))
4443imbi2d 340 . . . . . 6 ((𝜑𝑧𝐴) → (((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4544ralbidva 3173 . . . . 5 (𝜑 → (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4645rexbidv 3176 . . . 4 (𝜑 → (∃𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∃𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
4746ralbidv 3175 . . 3 (𝜑 → (∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦)))
483, 47anbi12d 632 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦)) ↔ (0 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦))))
494, 36fmptd 7133 . . 3 (𝜑𝐹:𝐴⟶ℂ)
50 ellimcabssub0.a . . 3 (𝜑𝐴 ⊆ ℂ)
51 ellimcabssub0.p . . 3 (𝜑𝐷 ∈ ℂ)
5249, 50, 51ellimc3 25928 . 2 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑦))))
538, 50, 51ellimc3 25928 . 2 (𝜑 → (0 ∈ (𝐺 lim 𝐷) ↔ (0 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑤) → (abs‘((𝐺𝑧) − 0)) < 𝑦))))
5448, 52, 533bitr4d 311 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ 0 ∈ (𝐺 lim 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  [wsb 2061  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  [wsbc 3790  csb 3907  wss 3962   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cc 11150  0cc0 11152   < clt 11292  cmin 11489  +crp 13031  abscabs 15269   lim climc 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-fz 13544  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cnp 23251  df-xms 24345  df-ms 24346  df-limc 25915
This theorem is referenced by:  reclimc  45608
  Copyright terms: Public domain W3C validator