MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux1i Structured version   Visualization version   GIF version

Theorem infcvgaux1i 15214
Description: Auxiliary theorem for applications of supcvg 15213. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.)
Hypotheses
Ref Expression
infcvg.1 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
infcvg.2 (𝑦𝑋𝐴 ∈ ℝ)
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
Assertion
Ref Expression
infcvgaux1i (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝑧,𝑤,𝑅   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑋(𝑧,𝑤)   𝑍(𝑧,𝑤)

Proof of Theorem infcvgaux1i
StepHypRef Expression
1 infcvg.1 . . 3 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
2 infcvg.2 . . . . . . 7 (𝑦𝑋𝐴 ∈ ℝ)
32renegcld 11069 . . . . . 6 (𝑦𝑋 → -𝐴 ∈ ℝ)
4 eleq1 2902 . . . . . 6 (𝑥 = -𝐴 → (𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ))
53, 4syl5ibrcom 249 . . . . 5 (𝑦𝑋 → (𝑥 = -𝐴𝑥 ∈ ℝ))
65rexlimiv 3282 . . . 4 (∃𝑦𝑋 𝑥 = -𝐴𝑥 ∈ ℝ)
76abssi 4048 . . 3 {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴} ⊆ ℝ
81, 7eqsstri 4003 . 2 𝑅 ⊆ ℝ
9 infcvg.3 . . . . . 6 𝑍𝑋
10 eqid 2823 . . . . . 6 -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴
1110nfth 1802 . . . . . . 7 𝑦-𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴
12 csbeq1a 3899 . . . . . . . . 9 (𝑦 = 𝑍𝐴 = 𝑍 / 𝑦𝐴)
1312negeqd 10882 . . . . . . . 8 (𝑦 = 𝑍 → -𝐴 = -𝑍 / 𝑦𝐴)
1413eqeq2d 2834 . . . . . . 7 (𝑦 = 𝑍 → (-𝑍 / 𝑦𝐴 = -𝐴 ↔ -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴))
1511, 14rspce 3614 . . . . . 6 ((𝑍𝑋 ∧ -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴) → ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴)
169, 10, 15mp2an 690 . . . . 5 𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴
17 negex 10886 . . . . . 6 -𝑍 / 𝑦𝐴 ∈ V
18 nfcsb1v 3909 . . . . . . . . 9 𝑦𝑍 / 𝑦𝐴
1918nfneg 10884 . . . . . . . 8 𝑦-𝑍 / 𝑦𝐴
2019nfeq2 2997 . . . . . . 7 𝑦 𝑥 = -𝑍 / 𝑦𝐴
21 eqeq1 2827 . . . . . . 7 (𝑥 = -𝑍 / 𝑦𝐴 → (𝑥 = -𝐴 ↔ -𝑍 / 𝑦𝐴 = -𝐴))
2220, 21rexbid 3322 . . . . . 6 (𝑥 = -𝑍 / 𝑦𝐴 → (∃𝑦𝑋 𝑥 = -𝐴 ↔ ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴))
2317, 22elab 3669 . . . . 5 (-𝑍 / 𝑦𝐴 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴} ↔ ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴)
2416, 23mpbir 233 . . . 4 -𝑍 / 𝑦𝐴 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
2524, 1eleqtrri 2914 . . 3 -𝑍 / 𝑦𝐴𝑅
2625ne0ii 4305 . 2 𝑅 ≠ ∅
27 infcvg.4 . 2 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
288, 26, 273pm3.2i 1335 1 (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  csb 3885  wss 3938  c0 4293   class class class wbr 5068  cr 10538  cle 10678  -cneg 10873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682  df-sub 10874  df-neg 10875
This theorem is referenced by:  infcvgaux2i  15215
  Copyright terms: Public domain W3C validator