MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux1i Structured version   Visualization version   GIF version

Theorem infcvgaux1i 15764
Description: Auxiliary theorem for applications of supcvg 15763. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.)
Hypotheses
Ref Expression
infcvg.1 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
infcvg.2 (𝑦𝑋𝐴 ∈ ℝ)
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
Assertion
Ref Expression
infcvgaux1i (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝑧,𝑤,𝑅   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑋(𝑧,𝑤)   𝑍(𝑧,𝑤)

Proof of Theorem infcvgaux1i
StepHypRef Expression
1 infcvg.1 . . 3 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
2 infcvg.2 . . . . . . 7 (𝑦𝑋𝐴 ∈ ℝ)
32renegcld 11547 . . . . . 6 (𝑦𝑋 → -𝐴 ∈ ℝ)
4 eleq1 2816 . . . . . 6 (𝑥 = -𝐴 → (𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ))
53, 4syl5ibrcom 247 . . . . 5 (𝑦𝑋 → (𝑥 = -𝐴𝑥 ∈ ℝ))
65rexlimiv 3123 . . . 4 (∃𝑦𝑋 𝑥 = -𝐴𝑥 ∈ ℝ)
76abssi 4021 . . 3 {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴} ⊆ ℝ
81, 7eqsstri 3982 . 2 𝑅 ⊆ ℝ
9 infcvg.3 . . . . . 6 𝑍𝑋
10 eqid 2729 . . . . . 6 -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴
1110nfth 1801 . . . . . . 7 𝑦-𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴
12 csbeq1a 3865 . . . . . . . . 9 (𝑦 = 𝑍𝐴 = 𝑍 / 𝑦𝐴)
1312negeqd 11357 . . . . . . . 8 (𝑦 = 𝑍 → -𝐴 = -𝑍 / 𝑦𝐴)
1413eqeq2d 2740 . . . . . . 7 (𝑦 = 𝑍 → (-𝑍 / 𝑦𝐴 = -𝐴 ↔ -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴))
1511, 14rspce 3566 . . . . . 6 ((𝑍𝑋 ∧ -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴) → ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴)
169, 10, 15mp2an 692 . . . . 5 𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴
17 negex 11361 . . . . . 6 -𝑍 / 𝑦𝐴 ∈ V
18 nfcsb1v 3875 . . . . . . . . 9 𝑦𝑍 / 𝑦𝐴
1918nfneg 11359 . . . . . . . 8 𝑦-𝑍 / 𝑦𝐴
2019nfeq2 2909 . . . . . . 7 𝑦 𝑥 = -𝑍 / 𝑦𝐴
21 eqeq1 2733 . . . . . . 7 (𝑥 = -𝑍 / 𝑦𝐴 → (𝑥 = -𝐴 ↔ -𝑍 / 𝑦𝐴 = -𝐴))
2220, 21rexbid 3243 . . . . . 6 (𝑥 = -𝑍 / 𝑦𝐴 → (∃𝑦𝑋 𝑥 = -𝐴 ↔ ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴))
2317, 22elab 3635 . . . . 5 (-𝑍 / 𝑦𝐴 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴} ↔ ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴)
2416, 23mpbir 231 . . . 4 -𝑍 / 𝑦𝐴 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
2524, 1eleqtrri 2827 . . 3 -𝑍 / 𝑦𝐴𝑅
2625ne0ii 4295 . 2 𝑅 ≠ ∅
27 infcvg.4 . 2 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
288, 26, 273pm3.2i 1340 1 (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  csb 3851  wss 3903  c0 4284   class class class wbr 5092  cr 11008  cle 11150  -cneg 11348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350
This theorem is referenced by:  infcvgaux2i  15765
  Copyright terms: Public domain W3C validator