MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux1i Structured version   Visualization version   GIF version

Theorem infcvgaux1i 14796
Description: Auxiliary theorem for applications of supcvg 14795. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.)
Hypotheses
Ref Expression
infcvg.1 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
infcvg.2 (𝑦𝑋𝐴 ∈ ℝ)
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
Assertion
Ref Expression
infcvgaux1i (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝑧,𝑤,𝑅   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑋(𝑧,𝑤)   𝑍(𝑧,𝑤)

Proof of Theorem infcvgaux1i
StepHypRef Expression
1 infcvg.1 . . 3 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
2 infcvg.2 . . . . . . 7 (𝑦𝑋𝐴 ∈ ℝ)
32renegcld 10659 . . . . . 6 (𝑦𝑋 → -𝐴 ∈ ℝ)
4 eleq1 2838 . . . . . 6 (𝑥 = -𝐴 → (𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ))
53, 4syl5ibrcom 237 . . . . 5 (𝑦𝑋 → (𝑥 = -𝐴𝑥 ∈ ℝ))
65rexlimiv 3175 . . . 4 (∃𝑦𝑋 𝑥 = -𝐴𝑥 ∈ ℝ)
76abssi 3826 . . 3 {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴} ⊆ ℝ
81, 7eqsstri 3784 . 2 𝑅 ⊆ ℝ
9 infcvg.3 . . . . . 6 𝑍𝑋
10 eqid 2771 . . . . . 6 -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴
1110nfth 1875 . . . . . . 7 𝑦-𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴
12 csbeq1a 3691 . . . . . . . . 9 (𝑦 = 𝑍𝐴 = 𝑍 / 𝑦𝐴)
1312negeqd 10477 . . . . . . . 8 (𝑦 = 𝑍 → -𝐴 = -𝑍 / 𝑦𝐴)
1413eqeq2d 2781 . . . . . . 7 (𝑦 = 𝑍 → (-𝑍 / 𝑦𝐴 = -𝐴 ↔ -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴))
1511, 14rspce 3455 . . . . . 6 ((𝑍𝑋 ∧ -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴) → ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴)
169, 10, 15mp2an 672 . . . . 5 𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴
17 negex 10481 . . . . . 6 -𝑍 / 𝑦𝐴 ∈ V
18 nfcsb1v 3698 . . . . . . . . 9 𝑦𝑍 / 𝑦𝐴
1918nfneg 10479 . . . . . . . 8 𝑦-𝑍 / 𝑦𝐴
2019nfeq2 2929 . . . . . . 7 𝑦 𝑥 = -𝑍 / 𝑦𝐴
21 eqeq1 2775 . . . . . . 7 (𝑥 = -𝑍 / 𝑦𝐴 → (𝑥 = -𝐴 ↔ -𝑍 / 𝑦𝐴 = -𝐴))
2220, 21rexbid 3199 . . . . . 6 (𝑥 = -𝑍 / 𝑦𝐴 → (∃𝑦𝑋 𝑥 = -𝐴 ↔ ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴))
2317, 22elab 3501 . . . . 5 (-𝑍 / 𝑦𝐴 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴} ↔ ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴)
2416, 23mpbir 221 . . . 4 -𝑍 / 𝑦𝐴 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
2524, 1eleqtrri 2849 . . 3 -𝑍 / 𝑦𝐴𝑅
2625ne0ii 4071 . 2 𝑅 ≠ ∅
27 infcvg.4 . 2 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
288, 26, 273pm3.2i 1423 1 (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  {cab 2757  wne 2943  wral 3061  wrex 3062  csb 3682  wss 3723  c0 4063   class class class wbr 4786  cr 10137  cle 10277  -cneg 10469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-ltxr 10281  df-sub 10470  df-neg 10471
This theorem is referenced by:  infcvgaux2i  14797
  Copyright terms: Public domain W3C validator