| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infcvgaux1i | Structured version Visualization version GIF version | ||
| Description: Auxiliary theorem for applications of supcvg 15798. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.) |
| Ref | Expression |
|---|---|
| infcvg.1 | ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} |
| infcvg.2 | ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) |
| infcvg.3 | ⊢ 𝑍 ∈ 𝑋 |
| infcvg.4 | ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 |
| Ref | Expression |
|---|---|
| infcvgaux1i | ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcvg.1 | . . 3 ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} | |
| 2 | infcvg.2 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) | |
| 3 | 2 | renegcld 11581 | . . . . . 6 ⊢ (𝑦 ∈ 𝑋 → -𝐴 ∈ ℝ) |
| 4 | eleq1 2816 | . . . . . 6 ⊢ (𝑥 = -𝐴 → (𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ)) | |
| 5 | 3, 4 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑦 ∈ 𝑋 → (𝑥 = -𝐴 → 𝑥 ∈ ℝ)) |
| 6 | 5 | rexlimiv 3127 | . . . 4 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = -𝐴 → 𝑥 ∈ ℝ) |
| 7 | 6 | abssi 4029 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} ⊆ ℝ |
| 8 | 1, 7 | eqsstri 3990 | . 2 ⊢ 𝑅 ⊆ ℝ |
| 9 | infcvg.3 | . . . . . 6 ⊢ 𝑍 ∈ 𝑋 | |
| 10 | eqid 2729 | . . . . . 6 ⊢ -⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴 | |
| 11 | 10 | nfth 1801 | . . . . . . 7 ⊢ Ⅎ𝑦-⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴 |
| 12 | csbeq1a 3873 | . . . . . . . . 9 ⊢ (𝑦 = 𝑍 → 𝐴 = ⦋𝑍 / 𝑦⦌𝐴) | |
| 13 | 12 | negeqd 11391 | . . . . . . . 8 ⊢ (𝑦 = 𝑍 → -𝐴 = -⦋𝑍 / 𝑦⦌𝐴) |
| 14 | 13 | eqeq2d 2740 | . . . . . . 7 ⊢ (𝑦 = 𝑍 → (-⦋𝑍 / 𝑦⦌𝐴 = -𝐴 ↔ -⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴)) |
| 15 | 11, 14 | rspce 3574 | . . . . . 6 ⊢ ((𝑍 ∈ 𝑋 ∧ -⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴) → ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴) |
| 16 | 9, 10, 15 | mp2an 692 | . . . . 5 ⊢ ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴 |
| 17 | negex 11395 | . . . . . 6 ⊢ -⦋𝑍 / 𝑦⦌𝐴 ∈ V | |
| 18 | nfcsb1v 3883 | . . . . . . . . 9 ⊢ Ⅎ𝑦⦋𝑍 / 𝑦⦌𝐴 | |
| 19 | 18 | nfneg 11393 | . . . . . . . 8 ⊢ Ⅎ𝑦-⦋𝑍 / 𝑦⦌𝐴 |
| 20 | 19 | nfeq2 2909 | . . . . . . 7 ⊢ Ⅎ𝑦 𝑥 = -⦋𝑍 / 𝑦⦌𝐴 |
| 21 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑥 = -⦋𝑍 / 𝑦⦌𝐴 → (𝑥 = -𝐴 ↔ -⦋𝑍 / 𝑦⦌𝐴 = -𝐴)) | |
| 22 | 20, 21 | rexbid 3249 | . . . . . 6 ⊢ (𝑥 = -⦋𝑍 / 𝑦⦌𝐴 → (∃𝑦 ∈ 𝑋 𝑥 = -𝐴 ↔ ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴)) |
| 23 | 17, 22 | elab 3643 | . . . . 5 ⊢ (-⦋𝑍 / 𝑦⦌𝐴 ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} ↔ ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴) |
| 24 | 16, 23 | mpbir 231 | . . . 4 ⊢ -⦋𝑍 / 𝑦⦌𝐴 ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} |
| 25 | 24, 1 | eleqtrri 2827 | . . 3 ⊢ -⦋𝑍 / 𝑦⦌𝐴 ∈ 𝑅 |
| 26 | 25 | ne0ii 4303 | . 2 ⊢ 𝑅 ≠ ∅ |
| 27 | infcvg.4 | . 2 ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | |
| 28 | 8, 26, 27 | 3pm3.2i 1340 | 1 ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⦋csb 3859 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 ℝcr 11043 ≤ cle 11185 -cneg 11382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: infcvgaux2i 15800 |
| Copyright terms: Public domain | W3C validator |