![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infcvgaux1i | Structured version Visualization version GIF version |
Description: Auxiliary theorem for applications of supcvg 15889. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.) |
Ref | Expression |
---|---|
infcvg.1 | ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} |
infcvg.2 | ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) |
infcvg.3 | ⊢ 𝑍 ∈ 𝑋 |
infcvg.4 | ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 |
Ref | Expression |
---|---|
infcvgaux1i | ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcvg.1 | . . 3 ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} | |
2 | infcvg.2 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) | |
3 | 2 | renegcld 11688 | . . . . . 6 ⊢ (𝑦 ∈ 𝑋 → -𝐴 ∈ ℝ) |
4 | eleq1 2827 | . . . . . 6 ⊢ (𝑥 = -𝐴 → (𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ)) | |
5 | 3, 4 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑦 ∈ 𝑋 → (𝑥 = -𝐴 → 𝑥 ∈ ℝ)) |
6 | 5 | rexlimiv 3146 | . . . 4 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = -𝐴 → 𝑥 ∈ ℝ) |
7 | 6 | abssi 4080 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} ⊆ ℝ |
8 | 1, 7 | eqsstri 4030 | . 2 ⊢ 𝑅 ⊆ ℝ |
9 | infcvg.3 | . . . . . 6 ⊢ 𝑍 ∈ 𝑋 | |
10 | eqid 2735 | . . . . . 6 ⊢ -⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴 | |
11 | 10 | nfth 1798 | . . . . . . 7 ⊢ Ⅎ𝑦-⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴 |
12 | csbeq1a 3922 | . . . . . . . . 9 ⊢ (𝑦 = 𝑍 → 𝐴 = ⦋𝑍 / 𝑦⦌𝐴) | |
13 | 12 | negeqd 11500 | . . . . . . . 8 ⊢ (𝑦 = 𝑍 → -𝐴 = -⦋𝑍 / 𝑦⦌𝐴) |
14 | 13 | eqeq2d 2746 | . . . . . . 7 ⊢ (𝑦 = 𝑍 → (-⦋𝑍 / 𝑦⦌𝐴 = -𝐴 ↔ -⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴)) |
15 | 11, 14 | rspce 3611 | . . . . . 6 ⊢ ((𝑍 ∈ 𝑋 ∧ -⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴) → ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴) |
16 | 9, 10, 15 | mp2an 692 | . . . . 5 ⊢ ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴 |
17 | negex 11504 | . . . . . 6 ⊢ -⦋𝑍 / 𝑦⦌𝐴 ∈ V | |
18 | nfcsb1v 3933 | . . . . . . . . 9 ⊢ Ⅎ𝑦⦋𝑍 / 𝑦⦌𝐴 | |
19 | 18 | nfneg 11502 | . . . . . . . 8 ⊢ Ⅎ𝑦-⦋𝑍 / 𝑦⦌𝐴 |
20 | 19 | nfeq2 2921 | . . . . . . 7 ⊢ Ⅎ𝑦 𝑥 = -⦋𝑍 / 𝑦⦌𝐴 |
21 | eqeq1 2739 | . . . . . . 7 ⊢ (𝑥 = -⦋𝑍 / 𝑦⦌𝐴 → (𝑥 = -𝐴 ↔ -⦋𝑍 / 𝑦⦌𝐴 = -𝐴)) | |
22 | 20, 21 | rexbid 3272 | . . . . . 6 ⊢ (𝑥 = -⦋𝑍 / 𝑦⦌𝐴 → (∃𝑦 ∈ 𝑋 𝑥 = -𝐴 ↔ ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴)) |
23 | 17, 22 | elab 3681 | . . . . 5 ⊢ (-⦋𝑍 / 𝑦⦌𝐴 ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} ↔ ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴) |
24 | 16, 23 | mpbir 231 | . . . 4 ⊢ -⦋𝑍 / 𝑦⦌𝐴 ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} |
25 | 24, 1 | eleqtrri 2838 | . . 3 ⊢ -⦋𝑍 / 𝑦⦌𝐴 ∈ 𝑅 |
26 | 25 | ne0ii 4350 | . 2 ⊢ 𝑅 ≠ ∅ |
27 | infcvg.4 | . 2 ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | |
28 | 8, 26, 27 | 3pm3.2i 1338 | 1 ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {cab 2712 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⦋csb 3908 ⊆ wss 3963 ∅c0 4339 class class class wbr 5148 ℝcr 11152 ≤ cle 11294 -cneg 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-neg 11493 |
This theorem is referenced by: infcvgaux2i 15891 |
Copyright terms: Public domain | W3C validator |