MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxdif3 Structured version   Visualization version   GIF version

Theorem iunxdif3 5003
Description: An indexed union where some terms are the empty set. See iunxdif2 4962. (Contributed by Thierry Arnoux, 4-May-2020.)
Hypothesis
Ref Expression
iunxdif3.1 𝑥𝐸
Assertion
Ref Expression
iunxdif3 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem iunxdif3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 inss2 4144 . . . . . 6 (𝐴𝐸) ⊆ 𝐸
2 nfcv 2904 . . . . . . . . . 10 𝑥𝐴
3 iunxdif3.1 . . . . . . . . . 10 𝑥𝐸
42, 3nfin 4131 . . . . . . . . 9 𝑥(𝐴𝐸)
54, 3ssrexf 3965 . . . . . . . 8 ((𝐴𝐸) ⊆ 𝐸 → (∃𝑥 ∈ (𝐴𝐸)𝑦𝐵 → ∃𝑥𝐸 𝑦𝐵))
6 eliun 4908 . . . . . . . 8 (𝑦 𝑥 ∈ (𝐴𝐸)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐸)𝑦𝐵)
7 eliun 4908 . . . . . . . 8 (𝑦 𝑥𝐸 𝐵 ↔ ∃𝑥𝐸 𝑦𝐵)
85, 6, 73imtr4g 299 . . . . . . 7 ((𝐴𝐸) ⊆ 𝐸 → (𝑦 𝑥 ∈ (𝐴𝐸)𝐵𝑦 𝑥𝐸 𝐵))
98ssrdv 3907 . . . . . 6 ((𝐴𝐸) ⊆ 𝐸 𝑥 ∈ (𝐴𝐸)𝐵 𝑥𝐸 𝐵)
101, 9ax-mp 5 . . . . 5 𝑥 ∈ (𝐴𝐸)𝐵 𝑥𝐸 𝐵
11 iuneq2 4923 . . . . . 6 (∀𝑥𝐸 𝐵 = ∅ → 𝑥𝐸 𝐵 = 𝑥𝐸 ∅)
12 iun0 4970 . . . . . 6 𝑥𝐸 ∅ = ∅
1311, 12eqtrdi 2794 . . . . 5 (∀𝑥𝐸 𝐵 = ∅ → 𝑥𝐸 𝐵 = ∅)
1410, 13sseqtrid 3953 . . . 4 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 ⊆ ∅)
15 ss0 4313 . . . 4 ( 𝑥 ∈ (𝐴𝐸)𝐵 ⊆ ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = ∅)
1614, 15syl 17 . . 3 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = ∅)
1716uneq1d 4076 . 2 (∀𝑥𝐸 𝐵 = ∅ → ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵) = (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵))
18 iunxun 5002 . . . 4 𝑥 ∈ ((𝐴𝐸) ∪ (𝐴𝐸))𝐵 = ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵)
19 inundif 4393 . . . . 5 ((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴
2019nfth 1809 . . . . . 6 𝑥((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴
212, 3nfdif 4040 . . . . . . 7 𝑥(𝐴𝐸)
224, 21nfun 4079 . . . . . 6 𝑥((𝐴𝐸) ∪ (𝐴𝐸))
23 id 22 . . . . . 6 (((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴 → ((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴)
24 eqidd 2738 . . . . . 6 (((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴𝐵 = 𝐵)
2520, 22, 2, 23, 24iuneq12df 4930 . . . . 5 (((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴 𝑥 ∈ ((𝐴𝐸) ∪ (𝐴𝐸))𝐵 = 𝑥𝐴 𝐵)
2619, 25ax-mp 5 . . . 4 𝑥 ∈ ((𝐴𝐸) ∪ (𝐴𝐸))𝐵 = 𝑥𝐴 𝐵
2718, 26eqtr3i 2767 . . 3 ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥𝐴 𝐵
2827a1i 11 . 2 (∀𝑥𝐸 𝐵 = ∅ → ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥𝐴 𝐵)
29 uncom 4067 . . . 4 (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵) = ( 𝑥 ∈ (𝐴𝐸)𝐵 ∪ ∅)
30 un0 4305 . . . 4 ( 𝑥 ∈ (𝐴𝐸)𝐵 ∪ ∅) = 𝑥 ∈ (𝐴𝐸)𝐵
3129, 30eqtri 2765 . . 3 (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥 ∈ (𝐴𝐸)𝐵
3231a1i 11 . 2 (∀𝑥𝐸 𝐵 = ∅ → (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥 ∈ (𝐴𝐸)𝐵)
3317, 28, 323eqtr3rd 2786 1 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wnfc 2884  wral 3061  wrex 3062  cdif 3863  cun 3864  cin 3865  wss 3866  c0 4237   ciun 4904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-iun 4906
This theorem is referenced by:  aciunf1  30720  suppovss  30737  ovnsubadd2lem  43858
  Copyright terms: Public domain W3C validator