MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxdif3 Structured version   Visualization version   GIF version

Theorem iunxdif3 5009
Description: An indexed union where some terms are the empty set. See iunxdif2 4969. (Contributed by Thierry Arnoux, 4-May-2020.)
Hypothesis
Ref Expression
iunxdif3.1 𝑥𝐸
Assertion
Ref Expression
iunxdif3 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem iunxdif3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 inss2 4205 . . . . . 6 (𝐴𝐸) ⊆ 𝐸
2 nfcv 2977 . . . . . . . . . 10 𝑥𝐴
3 iunxdif3.1 . . . . . . . . . 10 𝑥𝐸
42, 3nfin 4192 . . . . . . . . 9 𝑥(𝐴𝐸)
54, 3ssrexf 4030 . . . . . . . 8 ((𝐴𝐸) ⊆ 𝐸 → (∃𝑥 ∈ (𝐴𝐸)𝑦𝐵 → ∃𝑥𝐸 𝑦𝐵))
6 eliun 4915 . . . . . . . 8 (𝑦 𝑥 ∈ (𝐴𝐸)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐸)𝑦𝐵)
7 eliun 4915 . . . . . . . 8 (𝑦 𝑥𝐸 𝐵 ↔ ∃𝑥𝐸 𝑦𝐵)
85, 6, 73imtr4g 298 . . . . . . 7 ((𝐴𝐸) ⊆ 𝐸 → (𝑦 𝑥 ∈ (𝐴𝐸)𝐵𝑦 𝑥𝐸 𝐵))
98ssrdv 3972 . . . . . 6 ((𝐴𝐸) ⊆ 𝐸 𝑥 ∈ (𝐴𝐸)𝐵 𝑥𝐸 𝐵)
101, 9ax-mp 5 . . . . 5 𝑥 ∈ (𝐴𝐸)𝐵 𝑥𝐸 𝐵
11 iuneq2 4930 . . . . . 6 (∀𝑥𝐸 𝐵 = ∅ → 𝑥𝐸 𝐵 = 𝑥𝐸 ∅)
12 iun0 4977 . . . . . 6 𝑥𝐸 ∅ = ∅
1311, 12syl6eq 2872 . . . . 5 (∀𝑥𝐸 𝐵 = ∅ → 𝑥𝐸 𝐵 = ∅)
1410, 13sseqtrid 4018 . . . 4 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 ⊆ ∅)
15 ss0 4351 . . . 4 ( 𝑥 ∈ (𝐴𝐸)𝐵 ⊆ ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = ∅)
1614, 15syl 17 . . 3 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = ∅)
1716uneq1d 4137 . 2 (∀𝑥𝐸 𝐵 = ∅ → ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵) = (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵))
18 iunxun 5008 . . . 4 𝑥 ∈ ((𝐴𝐸) ∪ (𝐴𝐸))𝐵 = ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵)
19 inundif 4426 . . . . 5 ((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴
2019nfth 1798 . . . . . 6 𝑥((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴
212, 3nfdif 4101 . . . . . . 7 𝑥(𝐴𝐸)
224, 21nfun 4140 . . . . . 6 𝑥((𝐴𝐸) ∪ (𝐴𝐸))
23 id 22 . . . . . 6 (((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴 → ((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴)
24 eqidd 2822 . . . . . 6 (((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴𝐵 = 𝐵)
2520, 22, 2, 23, 24iuneq12df 4937 . . . . 5 (((𝐴𝐸) ∪ (𝐴𝐸)) = 𝐴 𝑥 ∈ ((𝐴𝐸) ∪ (𝐴𝐸))𝐵 = 𝑥𝐴 𝐵)
2619, 25ax-mp 5 . . . 4 𝑥 ∈ ((𝐴𝐸) ∪ (𝐴𝐸))𝐵 = 𝑥𝐴 𝐵
2718, 26eqtr3i 2846 . . 3 ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥𝐴 𝐵
2827a1i 11 . 2 (∀𝑥𝐸 𝐵 = ∅ → ( 𝑥 ∈ (𝐴𝐸)𝐵 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥𝐴 𝐵)
29 uncom 4128 . . . 4 (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵) = ( 𝑥 ∈ (𝐴𝐸)𝐵 ∪ ∅)
30 un0 4343 . . . 4 ( 𝑥 ∈ (𝐴𝐸)𝐵 ∪ ∅) = 𝑥 ∈ (𝐴𝐸)𝐵
3129, 30eqtri 2844 . . 3 (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥 ∈ (𝐴𝐸)𝐵
3231a1i 11 . 2 (∀𝑥𝐸 𝐵 = ∅ → (∅ ∪ 𝑥 ∈ (𝐴𝐸)𝐵) = 𝑥 ∈ (𝐴𝐸)𝐵)
3317, 28, 323eqtr3rd 2865 1 (∀𝑥𝐸 𝐵 = ∅ → 𝑥 ∈ (𝐴𝐸)𝐵 = 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wnfc 2961  wral 3138  wrex 3139  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290   ciun 4911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-iun 4913
This theorem is referenced by:  aciunf1  30402  suppovss  30420  ovnsubadd2lem  42921
  Copyright terms: Public domain W3C validator