MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqiOLD Structured version   Visualization version   GIF version

Theorem rabeqiOLD 3466
Description: Obsolete version of rabeqi 3440 as of 3-Jun-2024. (Contributed by Glauco Siliprandi, 26-Jun-2021.) Avoid ax-10 2130 and ax-11 2147. (Revised by Gino Giotto, 20-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rabeqiOLD.1 𝐴 = 𝐵
Assertion
Ref Expression
rabeqiOLD {𝑥𝐴𝜑} = {𝑥𝐵𝜑}

Proof of Theorem rabeqiOLD
StepHypRef Expression
1 rabeqiOLD.1 . 2 𝐴 = 𝐵
21nfth 1796 . . . 4 𝑥 𝐴 = 𝐵
3 eleq2 2817 . . . . 5 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
43anbi1d 629 . . . 4 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
52, 4abbid 2798 . . 3 (𝐴 = 𝐵 → {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐵𝜑)})
6 df-rab 3428 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
7 df-rab 3428 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
85, 6, 73eqtr4g 2792 . 2 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
91, 8ax-mp 5 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wcel 2099  {cab 2704  {crab 3427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator