Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbc2ieOLD | Structured version Visualization version GIF version |
Description: Obsolete version of sbc2ie 3798 as of 12-Oct-2024. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbc2ieOLD.1 | ⊢ 𝐴 ∈ V |
sbc2ieOLD.2 | ⊢ 𝐵 ∈ V |
sbc2ieOLD.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbc2ieOLD | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc2ieOLD.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbc2ieOLD.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦𝜓 | |
5 | 2 | nfth 1804 | . . 3 ⊢ Ⅎ𝑥 𝐵 ∈ V |
6 | sbc2ieOLD.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
7 | 3, 4, 5, 6 | sbc2iegf 3797 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
8 | 1, 2, 7 | mp2an 689 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3429 [wsbc 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3716 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |