| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbc2ieOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of sbc2ie 3871 as of 12-Oct-2024. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbc2ieOLD.1 | ⊢ 𝐴 ∈ V |
| sbc2ieOLD.2 | ⊢ 𝐵 ∈ V |
| sbc2ieOLD.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbc2ieOLD | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2ieOLD.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbc2ieOLD.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | nfv 1910 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | nfv 1910 | . . 3 ⊢ Ⅎ𝑦𝜓 | |
| 5 | 2 | nfth 1796 | . . 3 ⊢ Ⅎ𝑥 𝐵 ∈ V |
| 6 | sbc2ieOLD.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 7 | 3, 4, 5, 6 | sbc2iegf 3870 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
| 8 | 1, 2, 7 | mp2an 690 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2100 Vcvv 3472 [wsbc 3788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-12 2170 ax-ext 2700 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2062 df-clab 2707 df-cleq 2721 df-clel 2806 df-sbc 3789 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |