![]() |
Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > findabrcl | Structured version Visualization version GIF version |
Description: Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
findabrcl.1 | ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) |
Ref | Expression |
---|---|
findabrcl | ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3427 | . . . 4 ⊢ (𝐶 ∈ ω → 𝐶 ∈ V) | |
2 | fveq2 6493 | . . . . 5 ⊢ (𝑥 = 𝐶 → (rec(𝐺, 𝐴)‘𝑥) = (rec(𝐺, 𝐴)‘𝐶)) | |
3 | eqid 2772 | . . . . 5 ⊢ (𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥)) = (𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥)) | |
4 | fvex 6506 | . . . . 5 ⊢ (rec(𝐺, 𝐴)‘𝐶) ∈ V | |
5 | 2, 3, 4 | fvmpt 6589 | . . . 4 ⊢ (𝐶 ∈ V → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐶 ∈ ω → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶)) |
7 | 6 | adantr 473 | . 2 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶)) |
8 | findabrcl.1 | . . . 4 ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) | |
9 | 8 | findreccl 33321 | . . 3 ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) |
10 | 9 | imp 398 | . 2 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃) |
11 | 7, 10 | eqeltrd 2860 | 1 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3409 ↦ cmpt 5002 ‘cfv 6182 ωcom 7390 reccrdg 7843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-om 7391 df-wrecs 7744 df-recs 7806 df-rdg 7844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |