| Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > findabrcl | Structured version Visualization version GIF version | ||
| Description: Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| findabrcl.1 | ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) |
| Ref | Expression |
|---|---|
| findabrcl | ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . . . 4 ⊢ (𝐶 ∈ ω → 𝐶 ∈ V) | |
| 2 | fveq2 6860 | . . . . 5 ⊢ (𝑥 = 𝐶 → (rec(𝐺, 𝐴)‘𝑥) = (rec(𝐺, 𝐴)‘𝐶)) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥)) = (𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥)) | |
| 4 | fvex 6873 | . . . . 5 ⊢ (rec(𝐺, 𝐴)‘𝐶) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6970 | . . . 4 ⊢ (𝐶 ∈ V → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶)) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐶 ∈ ω → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶)) |
| 7 | 6 | adantr 480 | . 2 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶)) |
| 8 | findabrcl.1 | . . . 4 ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) | |
| 9 | 8 | findreccl 36436 | . . 3 ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) |
| 10 | 9 | imp 406 | . 2 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃) |
| 11 | 7, 10 | eqeltrd 2829 | 1 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5190 ‘cfv 6513 ωcom 7844 reccrdg 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |