Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  findabrcl Structured version   Visualization version   GIF version

Theorem findabrcl 36477
Description: Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
findabrcl.1 (𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)
Assertion
Ref Expression
findabrcl ((𝐶 ∈ ω ∧ 𝐴𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐴   𝑥,𝐶   𝑧,𝐺   𝑧,𝐴   𝑧,𝑃
Allowed substitution hints:   𝐶(𝑧)   𝑃(𝑥)

Proof of Theorem findabrcl
StepHypRef Expression
1 elex 3485 . . . 4 (𝐶 ∈ ω → 𝐶 ∈ V)
2 fveq2 6881 . . . . 5 (𝑥 = 𝐶 → (rec(𝐺, 𝐴)‘𝑥) = (rec(𝐺, 𝐴)‘𝐶))
3 eqid 2736 . . . . 5 (𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥)) = (𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))
4 fvex 6894 . . . . 5 (rec(𝐺, 𝐴)‘𝐶) ∈ V
52, 3, 4fvmpt 6991 . . . 4 (𝐶 ∈ V → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶))
61, 5syl 17 . . 3 (𝐶 ∈ ω → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶))
76adantr 480 . 2 ((𝐶 ∈ ω ∧ 𝐴𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶))
8 findabrcl.1 . . . 4 (𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)
98findreccl 36476 . . 3 (𝐶 ∈ ω → (𝐴𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃))
109imp 406 . 2 ((𝐶 ∈ ω ∧ 𝐴𝑃) → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)
117, 10eqeltrd 2835 1 ((𝐶 ∈ ω ∧ 𝐴𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  cfv 6536  ωcom 7866  reccrdg 8428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator