Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
2 | 1 | bicomi 223 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
3 | 2 | necon3abii 2989 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
4 | 3 | bicomi 223 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon1abii 2991 nssinpss 4187 difsnpss 4737 xpdifid 6060 frpoind 6230 wfiOLD 6239 ordintdif 6300 tfi 7675 oelim2 8388 0sdomg 8842 frind 9439 fin23lem26 10012 axdc3lem4 10140 axdc4lem 10142 axcclem 10144 crreczi 13871 ef0lem 15716 lidlnz 20412 nconnsubb 22482 ufileu 22978 itg2cnlem1 24831 plyeq0lem 25276 abelthlem2 25496 ppinprm 26206 chtnprm 26208 ltgov 26862 usgr2pthlem 28032 shne0i 29711 pjneli 29986 eleigvec 30220 nmo 30739 qqhval2lem 31831 qqhval2 31832 sibfof 32207 dffr5 33627 sltlpss 34014 ellimits 34139 elicc3 34433 itg2addnclem2 35756 ftc1anclem3 35779 onfrALTlem5 42051 onfrALTlem5VD 42394 limcrecl 43060 |
Copyright terms: Public domain | W3C validator |