MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3bbii Structured version   Visualization version   GIF version

Theorem necon3bbii 2990
Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon3bbii.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon3bbii 𝜑𝐴𝐵)

Proof of Theorem necon3bbii
StepHypRef Expression
1 necon3bbii.1 . . . 4 (𝜑𝐴 = 𝐵)
21bicomi 223 . . 3 (𝐴 = 𝐵𝜑)
32necon3abii 2989 . 2 (𝐴𝐵 ↔ ¬ 𝜑)
43bicomi 223 1 𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2943
This theorem is referenced by:  necon1abii  2991  nssinpss  4187  difsnpss  4737  xpdifid  6060  frpoind  6230  wfiOLD  6239  ordintdif  6300  tfi  7675  oelim2  8388  0sdomg  8842  frind  9439  fin23lem26  10012  axdc3lem4  10140  axdc4lem  10142  axcclem  10144  crreczi  13871  ef0lem  15716  lidlnz  20412  nconnsubb  22482  ufileu  22978  itg2cnlem1  24831  plyeq0lem  25276  abelthlem2  25496  ppinprm  26206  chtnprm  26208  ltgov  26862  usgr2pthlem  28032  shne0i  29711  pjneli  29986  eleigvec  30220  nmo  30739  qqhval2lem  31831  qqhval2  31832  sibfof  32207  dffr5  33627  sltlpss  34014  ellimits  34139  elicc3  34433  itg2addnclem2  35756  ftc1anclem3  35779  onfrALTlem5  42051  onfrALTlem5VD  42394  limcrecl  43060
  Copyright terms: Public domain W3C validator