Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
2 | 1 | bicomi 223 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
3 | 2 | necon3abii 2990 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
4 | 3 | bicomi 223 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon1abii 2992 nssinpss 4190 difsnpss 4740 xpdifid 6071 frpoind 6245 wfiOLD 6254 ordintdif 6315 tfi 7700 oelim2 8426 0sdomg 8891 0sdomgOLD 8892 frind 9508 fin23lem26 10081 axdc3lem4 10209 axdc4lem 10211 axcclem 10213 crreczi 13943 ef0lem 15788 lidlnz 20499 nconnsubb 22574 ufileu 23070 itg2cnlem1 24926 plyeq0lem 25371 abelthlem2 25591 ppinprm 26301 chtnprm 26303 ltgov 26958 usgr2pthlem 28131 shne0i 29810 pjneli 30085 eleigvec 30319 nmo 30838 qqhval2lem 31931 qqhval2 31932 sibfof 32307 dffr5 33721 sltlpss 34087 ellimits 34212 elicc3 34506 itg2addnclem2 35829 ftc1anclem3 35852 onfrALTlem5 42162 onfrALTlem5VD 42505 limcrecl 43170 |
Copyright terms: Public domain | W3C validator |