| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 2 | 1 | bicomi 224 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| 3 | 2 | necon3abii 2978 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: necon1abii 2980 nssinpss 4242 difsnpss 4783 xpdifid 6157 frpoind 6331 wfiOLD 6340 ordintdif 6403 tfi 7848 oelim2 8607 0sdomg 9118 0sdomgOLD 9119 frind 9764 fin23lem26 10339 axdc3lem4 10467 axdc4lem 10469 axcclem 10471 crreczi 14246 ef0lem 16094 lidlnz 21203 nconnsubb 23361 ufileu 23857 itg2cnlem1 25714 plyeq0lem 26167 abelthlem2 26394 ppinprm 27114 chtnprm 27116 sltlpss 27871 mulsval 28064 ltgov 28576 usgr2pthlem 29745 shne0i 31429 pjneli 31704 eleigvec 31938 nmo 32471 qqhval2lem 34012 qqhval2 34013 sibfof 34372 dffr5 35771 ellimits 35928 elicc3 36335 itg2addnclem2 37696 ftc1anclem3 37719 onfrALTlem5 44567 onfrALTlem5VD 44909 limcrecl 45658 dfnbgr6 47870 |
| Copyright terms: Public domain | W3C validator |