MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3bbii Structured version   Visualization version   GIF version

Theorem necon3bbii 2972
Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon3bbii.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon3bbii 𝜑𝐴𝐵)

Proof of Theorem necon3bbii
StepHypRef Expression
1 necon3bbii.1 . . . 4 (𝜑𝐴 = 𝐵)
21bicomi 224 . . 3 (𝐴 = 𝐵𝜑)
32necon3abii 2971 . 2 (𝐴𝐵 ↔ ¬ 𝜑)
43bicomi 224 1 𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  necon1abii  2973  nssinpss  4220  difsnpss  4761  xpdifid  6121  frpoind  6294  ordintdif  6362  tfi  7793  oelim2  8520  0sdomg  9030  frind  9665  fin23lem26  10238  axdc3lem4  10366  axdc4lem  10368  axcclem  10370  crreczi  14153  ef0lem  16003  lidlnz  21167  nconnsubb  23326  ufileu  23822  itg2cnlem1  25678  plyeq0lem  26131  abelthlem2  26358  ppinprm  27078  chtnprm  27080  sltlpss  27840  mulsval  28035  ltgov  28560  usgr2pthlem  29726  shne0i  31410  pjneli  31685  eleigvec  31919  nmo  32452  qqhval2lem  33947  qqhval2  33948  sibfof  34307  onvf1odlem2  35076  dffr5  35726  ellimits  35883  elicc3  36290  itg2addnclem2  37651  ftc1anclem3  37674  onfrALTlem5  44516  onfrALTlem5VD  44858  limcrecl  45611  dfnbgr6  47842
  Copyright terms: Public domain W3C validator