| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 2 | 1 | bicomi 224 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| 3 | 2 | necon3abii 2974 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: necon1abii 2976 nssinpss 4217 difsnpss 4759 xpdifid 6115 frpoind 6289 ordintdif 6357 tfi 7783 oelim2 8510 0sdomg 9019 frind 9640 fin23lem26 10213 axdc3lem4 10341 axdc4lem 10343 axcclem 10345 crreczi 14132 ef0lem 15982 lidlnz 21177 nconnsubb 23336 ufileu 23832 itg2cnlem1 25687 plyeq0lem 26140 abelthlem2 26367 ppinprm 27087 chtnprm 27089 sltlpss 27851 mulsval 28046 ltgov 28573 usgr2pthlem 29739 shne0i 31423 pjneli 31698 eleigvec 31932 nmo 32464 qqhval2lem 33989 qqhval2 33990 sibfof 34348 onvf1odlem2 35136 dffr5 35786 ellimits 35943 elicc3 36350 itg2addnclem2 37711 ftc1anclem3 37734 onfrALTlem5 44574 onfrALTlem5VD 44916 limcrecl 45668 dfnbgr6 47887 |
| Copyright terms: Public domain | W3C validator |