| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 2 | 1 | bicomi 224 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| 3 | 2 | necon3abii 2972 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon1abii 2974 nssinpss 4233 difsnpss 4774 xpdifid 6144 frpoind 6318 ordintdif 6386 tfi 7832 oelim2 8562 0sdomg 9076 frind 9710 fin23lem26 10285 axdc3lem4 10413 axdc4lem 10415 axcclem 10417 crreczi 14200 ef0lem 16051 lidlnz 21159 nconnsubb 23317 ufileu 23813 itg2cnlem1 25669 plyeq0lem 26122 abelthlem2 26349 ppinprm 27069 chtnprm 27071 sltlpss 27826 mulsval 28019 ltgov 28531 usgr2pthlem 29700 shne0i 31384 pjneli 31659 eleigvec 31893 nmo 32426 qqhval2lem 33978 qqhval2 33979 sibfof 34338 onvf1odlem2 35098 dffr5 35748 ellimits 35905 elicc3 36312 itg2addnclem2 37673 ftc1anclem3 37696 onfrALTlem5 44539 onfrALTlem5VD 44881 limcrecl 45634 dfnbgr6 47861 |
| Copyright terms: Public domain | W3C validator |