| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 2 | 1 | bicomi 224 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| 3 | 2 | necon3abii 2975 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: necon1abii 2977 nssinpss 4216 difsnpss 4758 xpdifid 6120 frpoind 6294 ordintdif 6362 tfi 7789 oelim2 8516 0sdomg 9026 frind 9650 fin23lem26 10223 axdc3lem4 10351 axdc4lem 10353 axcclem 10355 crreczi 14137 ef0lem 15987 lidlnz 21181 nconnsubb 23339 ufileu 23835 itg2cnlem1 25690 plyeq0lem 26143 abelthlem2 26370 ppinprm 27090 chtnprm 27092 sltlpss 27854 mulsval 28049 ltgov 28576 usgr2pthlem 29743 shne0i 31430 pjneli 31705 eleigvec 31939 nmo 32471 qqhval2lem 34015 qqhval2 34016 sibfof 34374 onvf1odlem2 35169 dffr5 35819 ellimits 35973 elicc3 36382 itg2addnclem2 37732 ftc1anclem3 37755 onfrALTlem5 44659 onfrALTlem5VD 45001 limcrecl 45753 dfnbgr6 47981 |
| Copyright terms: Public domain | W3C validator |