MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon3bbii Structured version   Visualization version   GIF version

Theorem necon3bbii 2973
Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon3bbii.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon3bbii 𝜑𝐴𝐵)

Proof of Theorem necon3bbii
StepHypRef Expression
1 necon3bbii.1 . . . 4 (𝜑𝐴 = 𝐵)
21bicomi 224 . . 3 (𝐴 = 𝐵𝜑)
32necon3abii 2972 . 2 (𝐴𝐵 ↔ ¬ 𝜑)
43bicomi 224 1 𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2927
This theorem is referenced by:  necon1abii  2974  nssinpss  4233  difsnpss  4774  xpdifid  6144  frpoind  6318  ordintdif  6386  tfi  7832  oelim2  8562  0sdomg  9076  frind  9710  fin23lem26  10285  axdc3lem4  10413  axdc4lem  10415  axcclem  10417  crreczi  14200  ef0lem  16051  lidlnz  21159  nconnsubb  23317  ufileu  23813  itg2cnlem1  25669  plyeq0lem  26122  abelthlem2  26349  ppinprm  27069  chtnprm  27071  sltlpss  27826  mulsval  28019  ltgov  28531  usgr2pthlem  29700  shne0i  31384  pjneli  31659  eleigvec  31893  nmo  32426  qqhval2lem  33978  qqhval2  33979  sibfof  34338  onvf1odlem2  35098  dffr5  35748  ellimits  35905  elicc3  36312  itg2addnclem2  37673  ftc1anclem3  37696  onfrALTlem5  44539  onfrALTlem5VD  44881  limcrecl  45634  dfnbgr6  47861
  Copyright terms: Public domain W3C validator