| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 2 | 1 | bicomi 224 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| 3 | 2 | necon3abii 2971 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1abii 2973 nssinpss 4220 difsnpss 4761 xpdifid 6121 frpoind 6294 ordintdif 6362 tfi 7793 oelim2 8520 0sdomg 9030 frind 9665 fin23lem26 10238 axdc3lem4 10366 axdc4lem 10368 axcclem 10370 crreczi 14153 ef0lem 16003 lidlnz 21167 nconnsubb 23326 ufileu 23822 itg2cnlem1 25678 plyeq0lem 26131 abelthlem2 26358 ppinprm 27078 chtnprm 27080 sltlpss 27840 mulsval 28035 ltgov 28560 usgr2pthlem 29726 shne0i 31410 pjneli 31685 eleigvec 31919 nmo 32452 qqhval2lem 33947 qqhval2 33948 sibfof 34307 onvf1odlem2 35076 dffr5 35726 ellimits 35883 elicc3 36290 itg2addnclem2 37651 ftc1anclem3 37674 onfrALTlem5 44516 onfrALTlem5VD 44858 limcrecl 45611 dfnbgr6 47842 |
| Copyright terms: Public domain | W3C validator |