![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
2 | 1 | bicomi 224 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
3 | 2 | necon3abii 2984 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1536 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2938 |
This theorem is referenced by: necon1abii 2986 nssinpss 4272 difsnpss 4811 xpdifid 6189 frpoind 6364 wfiOLD 6373 ordintdif 6435 tfi 7873 oelim2 8631 0sdomg 9142 0sdomgOLD 9143 frind 9787 fin23lem26 10362 axdc3lem4 10490 axdc4lem 10492 axcclem 10494 crreczi 14263 ef0lem 16110 lidlnz 21269 nconnsubb 23446 ufileu 23942 itg2cnlem1 25810 plyeq0lem 26263 abelthlem2 26490 ppinprm 27209 chtnprm 27211 sltlpss 27959 mulsval 28149 ltgov 28619 usgr2pthlem 29795 shne0i 31476 pjneli 31751 eleigvec 31985 nmo 32517 qqhval2lem 33943 qqhval2 33944 sibfof 34321 dffr5 35733 ellimits 35891 elicc3 36299 itg2addnclem2 37658 ftc1anclem3 37681 onfrALTlem5 44539 onfrALTlem5VD 44882 limcrecl 45584 dfnbgr6 47780 |
Copyright terms: Public domain | W3C validator |