![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
2 | 1 | bicomi 216 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
3 | 2 | necon3abii 3008 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
4 | 3 | bicomi 216 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 = wceq 1508 ≠ wne 2962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-ne 2963 |
This theorem is referenced by: necon1abii 3010 nssinpss 4115 difsnpss 4611 xpdifid 5863 wfi 6017 ordintdif 6076 tfi 7383 oelim2 8021 0sdomg 8441 fin23lem26 9544 axdc3lem4 9672 axdc4lem 9674 axcclem 9676 crreczi 13403 ef0lem 15291 lidlnz 19735 nconnsubb 21751 ufileu 22247 itg2cnlem1 24081 plyeq0lem 24519 abelthlem2 24739 ppinprm 25447 chtnprm 25449 ltgov 26101 usgr2pthlem 27268 shne0i 29022 pjneli 29297 eleigvec 29531 nmo 30052 qqhval2lem 30899 qqhval2 30900 sibfof 31276 dffr5 32542 frpoind 32634 frind 32639 ellimits 32925 elicc3 33219 itg2addnclem2 34418 ftc1anclem3 34443 onfrALTlem5 40329 onfrALTlem5VD 40672 limcrecl 41371 |
Copyright terms: Public domain | W3C validator |