![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
Ref | Expression |
---|---|
necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
2 | 1 | bicomi 224 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
3 | 2 | necon3abii 2993 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon1abii 2995 nssinpss 4286 difsnpss 4832 xpdifid 6199 frpoind 6374 wfiOLD 6383 ordintdif 6445 tfi 7890 oelim2 8651 0sdomg 9170 0sdomgOLD 9171 frind 9819 fin23lem26 10394 axdc3lem4 10522 axdc4lem 10524 axcclem 10526 crreczi 14277 ef0lem 16126 lidlnz 21275 nconnsubb 23452 ufileu 23948 itg2cnlem1 25816 plyeq0lem 26269 abelthlem2 26494 ppinprm 27213 chtnprm 27215 sltlpss 27963 mulsval 28153 ltgov 28623 usgr2pthlem 29799 shne0i 31480 pjneli 31755 eleigvec 31989 nmo 32518 qqhval2lem 33927 qqhval2 33928 sibfof 34305 dffr5 35716 ellimits 35874 elicc3 36283 itg2addnclem2 37632 ftc1anclem3 37655 onfrALTlem5 44513 onfrALTlem5VD 44856 limcrecl 45550 dfnbgr6 47729 |
Copyright terms: Public domain | W3C validator |