| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbii | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon3bbii.1 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| necon3bbii | ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 2 | 1 | bicomi 224 | . . 3 ⊢ (𝐴 = 𝐵 ↔ 𝜑) |
| 3 | 2 | necon3abii 2971 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝜑) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜑 ↔ 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1abii 2973 nssinpss 4230 difsnpss 4771 xpdifid 6141 frpoind 6315 ordintdif 6383 tfi 7829 oelim2 8559 0sdomg 9070 frind 9703 fin23lem26 10278 axdc3lem4 10406 axdc4lem 10408 axcclem 10410 crreczi 14193 ef0lem 16044 lidlnz 21152 nconnsubb 23310 ufileu 23806 itg2cnlem1 25662 plyeq0lem 26115 abelthlem2 26342 ppinprm 27062 chtnprm 27064 sltlpss 27819 mulsval 28012 ltgov 28524 usgr2pthlem 29693 shne0i 31377 pjneli 31652 eleigvec 31886 nmo 32419 qqhval2lem 33971 qqhval2 33972 sibfof 34331 onvf1odlem2 35091 dffr5 35741 ellimits 35898 elicc3 36305 itg2addnclem2 37666 ftc1anclem3 37689 onfrALTlem5 44532 onfrALTlem5VD 44874 limcrecl 45627 dfnbgr6 47857 |
| Copyright terms: Public domain | W3C validator |