Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsspssun | Structured version Visualization version GIF version |
Description: Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
nsspssun | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4103 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
2 | 1 | biantrur 530 | . . 3 ⊢ (¬ (𝐴 ∪ 𝐵) ⊆ 𝐵 ↔ (𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ ¬ (𝐴 ∪ 𝐵) ⊆ 𝐵)) |
3 | ssid 3939 | . . . . 5 ⊢ 𝐵 ⊆ 𝐵 | |
4 | 3 | biantru 529 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵)) |
5 | unss 4114 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐵) | |
6 | 4, 5 | bitri 274 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) ⊆ 𝐵) |
7 | 2, 6 | xchnxbir 332 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ ¬ (𝐴 ∪ 𝐵) ⊆ 𝐵)) |
8 | dfpss3 4017 | . 2 ⊢ (𝐵 ⊊ (𝐴 ∪ 𝐵) ↔ (𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ ¬ (𝐴 ∪ 𝐵) ⊆ 𝐵)) | |
9 | 7, 8 | bitr4i 277 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∪ cun 3881 ⊆ wss 3883 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 |
This theorem is referenced by: disjpss 4391 lindsenlbs 35699 |
Copyright terms: Public domain | W3C validator |