| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsspssun | Structured version Visualization version GIF version | ||
| Description: Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| nsspssun | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4145 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | 1 | biantrur 530 | . . 3 ⊢ (¬ (𝐴 ∪ 𝐵) ⊆ 𝐵 ↔ (𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ ¬ (𝐴 ∪ 𝐵) ⊆ 𝐵)) |
| 3 | ssid 3972 | . . . . 5 ⊢ 𝐵 ⊆ 𝐵 | |
| 4 | 3 | biantru 529 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵)) |
| 5 | unss 4156 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐵) | |
| 6 | 4, 5 | bitri 275 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) ⊆ 𝐵) |
| 7 | 2, 6 | xchnxbir 333 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ ¬ (𝐴 ∪ 𝐵) ⊆ 𝐵)) |
| 8 | dfpss3 4055 | . 2 ⊢ (𝐵 ⊊ (𝐴 ∪ 𝐵) ↔ (𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ ¬ (𝐴 ∪ 𝐵) ⊆ 𝐵)) | |
| 9 | 7, 8 | bitr4i 278 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∪ cun 3915 ⊆ wss 3917 ⊊ wpss 3918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-un 3922 df-ss 3934 df-pss 3937 |
| This theorem is referenced by: disjpss 4427 lindsenlbs 37616 |
| Copyright terms: Public domain | W3C validator |