Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsspssun | Structured version Visualization version GIF version |
Description: Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
nsspssun | ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4080 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
2 | 1 | biantrur 534 | . . 3 ⊢ (¬ (𝐴 ∪ 𝐵) ⊆ 𝐵 ↔ (𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ ¬ (𝐴 ∪ 𝐵) ⊆ 𝐵)) |
3 | ssid 3916 | . . . . 5 ⊢ 𝐵 ⊆ 𝐵 | |
4 | 3 | biantru 533 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵)) |
5 | unss 4091 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐵) | |
6 | 4, 5 | bitri 278 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) ⊆ 𝐵) |
7 | 2, 6 | xchnxbir 336 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ ¬ (𝐴 ∪ 𝐵) ⊆ 𝐵)) |
8 | dfpss3 3994 | . 2 ⊢ (𝐵 ⊊ (𝐴 ∪ 𝐵) ↔ (𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ ¬ (𝐴 ∪ 𝐵) ⊆ 𝐵)) | |
9 | 7, 8 | bitr4i 281 | 1 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 399 ∪ cun 3858 ⊆ wss 3860 ⊊ wpss 3861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ne 2952 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 |
This theorem is referenced by: disjpss 4360 lindsenlbs 35358 |
Copyright terms: Public domain | W3C validator |