MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbfinnfr Structured version   Visualization version   GIF version

Theorem fbfinnfr 23761
Description: No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbfinnfr ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)

Proof of Theorem fbfinnfr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2816 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐹𝑦𝐹))
21anbi2d 630 . . . . 5 (𝑥 = 𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹)))
32imbi1d 341 . . . 4 (𝑥 = 𝑦 → (((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅)))
4 eleq1 2816 . . . . . 6 (𝑥 = 𝑆 → (𝑥𝐹𝑆𝐹))
54anbi2d 630 . . . . 5 (𝑥 = 𝑆 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹)))
65imbi1d 341 . . . 4 (𝑥 = 𝑆 → (((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → 𝐹 ≠ ∅)))
7 bi2.04 387 . . . . . . . . . 10 ((𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → (𝑥𝑦 𝐹 ≠ ∅)))
8 ibar 528 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝐵) → (𝑥𝐹 ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹)))
98adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑥𝐹 ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹)))
109imbi1d 341 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → ((𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅)) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → (𝑥𝑦 𝐹 ≠ ∅))))
117, 10bitr4id 290 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → ((𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ (𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅))))
1211albidv 1920 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ∀𝑥(𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅))))
13 df-ral 3045 . . . . . . . 8 (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ↔ ∀𝑥(𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅)))
1412, 13bitr4di 289 . . . . . . 7 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅)))
15 0nelfb 23751 . . . . . . . . . . . . 13 (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)
16 eleq1 2816 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝑦𝐹 ↔ ∅ ∈ 𝐹))
1716notbid 318 . . . . . . . . . . . . 13 (𝑦 = ∅ → (¬ 𝑦𝐹 ↔ ¬ ∅ ∈ 𝐹))
1815, 17syl5ibrcom 247 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝐵) → (𝑦 = ∅ → ¬ 𝑦𝐹))
1918necon2ad 2940 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝐵) → (𝑦𝐹𝑦 ≠ ∅))
2019imp 406 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝑦 ≠ ∅)
21 ssn0 4363 . . . . . . . . . . 11 ((𝑦 𝐹𝑦 ≠ ∅) → 𝐹 ≠ ∅)
2221ex 412 . . . . . . . . . 10 (𝑦 𝐹 → (𝑦 ≠ ∅ → 𝐹 ≠ ∅))
2320, 22syl5com 31 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑦 𝐹 𝐹 ≠ ∅))
2423a1dd 50 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑦 𝐹 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅)))
25 ssint 4924 . . . . . . . . . . . 12 (𝑦 𝐹 ↔ ∀𝑧𝐹 𝑦𝑧)
2625notbii 320 . . . . . . . . . . 11 𝑦 𝐹 ↔ ¬ ∀𝑧𝐹 𝑦𝑧)
27 rexnal 3082 . . . . . . . . . . 11 (∃𝑧𝐹 ¬ 𝑦𝑧 ↔ ¬ ∀𝑧𝐹 𝑦𝑧)
2826, 27bitr4i 278 . . . . . . . . . 10 𝑦 𝐹 ↔ ∃𝑧𝐹 ¬ 𝑦𝑧)
29 fbasssin 23756 . . . . . . . . . . . . 13 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹𝑧𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
30 nssinpss 4226 . . . . . . . . . . . . . . . 16 𝑦𝑧 ↔ (𝑦𝑧) ⊊ 𝑦)
31 sspsstr 4067 . . . . . . . . . . . . . . . 16 ((𝑥 ⊆ (𝑦𝑧) ∧ (𝑦𝑧) ⊊ 𝑦) → 𝑥𝑦)
3230, 31sylan2b 594 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ (𝑦𝑧) ∧ ¬ 𝑦𝑧) → 𝑥𝑦)
3332expcom 413 . . . . . . . . . . . . . 14 𝑦𝑧 → (𝑥 ⊆ (𝑦𝑧) → 𝑥𝑦))
3433reximdv 3148 . . . . . . . . . . . . 13 𝑦𝑧 → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥𝑦))
3529, 34syl5com 31 . . . . . . . . . . . 12 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹𝑧𝐹) → (¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦))
36353expia 1121 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑧𝐹 → (¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦)))
3736rexlimdv 3132 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∃𝑧𝐹 ¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦))
3828, 37biimtrid 242 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (¬ 𝑦 𝐹 → ∃𝑥𝐹 𝑥𝑦))
39 r19.29 3094 . . . . . . . . . . 11 ((∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ∧ ∃𝑥𝐹 𝑥𝑦) → ∃𝑥𝐹 ((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦))
40 id 22 . . . . . . . . . . . . 13 ((𝑥𝑦 𝐹 ≠ ∅) → (𝑥𝑦 𝐹 ≠ ∅))
4140imp 406 . . . . . . . . . . . 12 (((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦) → 𝐹 ≠ ∅)
4241rexlimivw 3130 . . . . . . . . . . 11 (∃𝑥𝐹 ((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦) → 𝐹 ≠ ∅)
4339, 42syl 17 . . . . . . . . . 10 ((∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ∧ ∃𝑥𝐹 𝑥𝑦) → 𝐹 ≠ ∅)
4443expcom 413 . . . . . . . . 9 (∃𝑥𝐹 𝑥𝑦 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅))
4538, 44syl6 35 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (¬ 𝑦 𝐹 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅)))
4624, 45pm2.61d 179 . . . . . . 7 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅))
4714, 46sylbid 240 . . . . . 6 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → 𝐹 ≠ ∅))
4847com12 32 . . . . 5 (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅))
4948a1i 11 . . . 4 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅)))
503, 6, 49findcard3 9205 . . 3 (𝑆 ∈ Fin → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → 𝐹 ≠ ∅))
5150com12 32 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → (𝑆 ∈ Fin → 𝐹 ≠ ∅))
52513impia 1117 1 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3910  wss 3911  wpss 3912  c0 4292   cint 4906  cfv 6499  Fincfn 8895  fBascfbas 21284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fbas 21293
This theorem is referenced by:  filfinnfr  23797
  Copyright terms: Public domain W3C validator