MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbfinnfr Structured version   Visualization version   GIF version

Theorem fbfinnfr 23666
Description: No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbfinnfr ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)

Proof of Theorem fbfinnfr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2813 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐹𝑦𝐹))
21anbi2d 628 . . . . 5 (𝑥 = 𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹)))
32imbi1d 341 . . . 4 (𝑥 = 𝑦 → (((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅)))
4 eleq1 2813 . . . . . 6 (𝑥 = 𝑆 → (𝑥𝐹𝑆𝐹))
54anbi2d 628 . . . . 5 (𝑥 = 𝑆 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹)))
65imbi1d 341 . . . 4 (𝑥 = 𝑆 → (((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → 𝐹 ≠ ∅)))
7 bi2.04 387 . . . . . . . . . 10 ((𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → (𝑥𝑦 𝐹 ≠ ∅)))
8 ibar 528 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝐵) → (𝑥𝐹 ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹)))
98adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑥𝐹 ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹)))
109imbi1d 341 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → ((𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅)) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → (𝑥𝑦 𝐹 ≠ ∅))))
117, 10bitr4id 290 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → ((𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ (𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅))))
1211albidv 1915 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ∀𝑥(𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅))))
13 df-ral 3054 . . . . . . . 8 (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ↔ ∀𝑥(𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅)))
1412, 13bitr4di 289 . . . . . . 7 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅)))
15 0nelfb 23656 . . . . . . . . . . . . 13 (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)
16 eleq1 2813 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝑦𝐹 ↔ ∅ ∈ 𝐹))
1716notbid 318 . . . . . . . . . . . . 13 (𝑦 = ∅ → (¬ 𝑦𝐹 ↔ ¬ ∅ ∈ 𝐹))
1815, 17syl5ibrcom 246 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝐵) → (𝑦 = ∅ → ¬ 𝑦𝐹))
1918necon2ad 2947 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝐵) → (𝑦𝐹𝑦 ≠ ∅))
2019imp 406 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝑦 ≠ ∅)
21 ssn0 4392 . . . . . . . . . . 11 ((𝑦 𝐹𝑦 ≠ ∅) → 𝐹 ≠ ∅)
2221ex 412 . . . . . . . . . 10 (𝑦 𝐹 → (𝑦 ≠ ∅ → 𝐹 ≠ ∅))
2320, 22syl5com 31 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑦 𝐹 𝐹 ≠ ∅))
2423a1dd 50 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑦 𝐹 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅)))
25 ssint 4958 . . . . . . . . . . . 12 (𝑦 𝐹 ↔ ∀𝑧𝐹 𝑦𝑧)
2625notbii 320 . . . . . . . . . . 11 𝑦 𝐹 ↔ ¬ ∀𝑧𝐹 𝑦𝑧)
27 rexnal 3092 . . . . . . . . . . 11 (∃𝑧𝐹 ¬ 𝑦𝑧 ↔ ¬ ∀𝑧𝐹 𝑦𝑧)
2826, 27bitr4i 278 . . . . . . . . . 10 𝑦 𝐹 ↔ ∃𝑧𝐹 ¬ 𝑦𝑧)
29 fbasssin 23661 . . . . . . . . . . . . 13 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹𝑧𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
30 nssinpss 4248 . . . . . . . . . . . . . . . 16 𝑦𝑧 ↔ (𝑦𝑧) ⊊ 𝑦)
31 sspsstr 4097 . . . . . . . . . . . . . . . 16 ((𝑥 ⊆ (𝑦𝑧) ∧ (𝑦𝑧) ⊊ 𝑦) → 𝑥𝑦)
3230, 31sylan2b 593 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ (𝑦𝑧) ∧ ¬ 𝑦𝑧) → 𝑥𝑦)
3332expcom 413 . . . . . . . . . . . . . 14 𝑦𝑧 → (𝑥 ⊆ (𝑦𝑧) → 𝑥𝑦))
3433reximdv 3162 . . . . . . . . . . . . 13 𝑦𝑧 → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥𝑦))
3529, 34syl5com 31 . . . . . . . . . . . 12 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹𝑧𝐹) → (¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦))
36353expia 1118 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑧𝐹 → (¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦)))
3736rexlimdv 3145 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∃𝑧𝐹 ¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦))
3828, 37biimtrid 241 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (¬ 𝑦 𝐹 → ∃𝑥𝐹 𝑥𝑦))
39 r19.29 3106 . . . . . . . . . . 11 ((∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ∧ ∃𝑥𝐹 𝑥𝑦) → ∃𝑥𝐹 ((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦))
40 id 22 . . . . . . . . . . . . 13 ((𝑥𝑦 𝐹 ≠ ∅) → (𝑥𝑦 𝐹 ≠ ∅))
4140imp 406 . . . . . . . . . . . 12 (((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦) → 𝐹 ≠ ∅)
4241rexlimivw 3143 . . . . . . . . . . 11 (∃𝑥𝐹 ((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦) → 𝐹 ≠ ∅)
4339, 42syl 17 . . . . . . . . . 10 ((∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ∧ ∃𝑥𝐹 𝑥𝑦) → 𝐹 ≠ ∅)
4443expcom 413 . . . . . . . . 9 (∃𝑥𝐹 𝑥𝑦 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅))
4538, 44syl6 35 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (¬ 𝑦 𝐹 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅)))
4624, 45pm2.61d 179 . . . . . . 7 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅))
4714, 46sylbid 239 . . . . . 6 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → 𝐹 ≠ ∅))
4847com12 32 . . . . 5 (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅))
4948a1i 11 . . . 4 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅)))
503, 6, 49findcard3 9280 . . 3 (𝑆 ∈ Fin → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → 𝐹 ≠ ∅))
5150com12 32 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → (𝑆 ∈ Fin → 𝐹 ≠ ∅))
52513impia 1114 1 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084  wal 1531   = wceq 1533  wcel 2098  wne 2932  wral 3053  wrex 3062  cin 3939  wss 3940  wpss 3941  c0 4314   cint 4940  cfv 6533  Fincfn 8934  fBascfbas 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-om 7849  df-1o 8461  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fbas 21224
This theorem is referenced by:  filfinnfr  23702
  Copyright terms: Public domain W3C validator