MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbfinnfr Structured version   Visualization version   GIF version

Theorem fbfinnfr 22992
Description: No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbfinnfr ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)

Proof of Theorem fbfinnfr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐹𝑦𝐹))
21anbi2d 629 . . . . 5 (𝑥 = 𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹)))
32imbi1d 342 . . . 4 (𝑥 = 𝑦 → (((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅)))
4 eleq1 2826 . . . . . 6 (𝑥 = 𝑆 → (𝑥𝐹𝑆𝐹))
54anbi2d 629 . . . . 5 (𝑥 = 𝑆 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹)))
65imbi1d 342 . . . 4 (𝑥 = 𝑆 → (((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → 𝐹 ≠ ∅)))
7 bi2.04 389 . . . . . . . . . 10 ((𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → (𝑥𝑦 𝐹 ≠ ∅)))
8 ibar 529 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝐵) → (𝑥𝐹 ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹)))
98adantr 481 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑥𝐹 ↔ (𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹)))
109imbi1d 342 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → ((𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅)) ↔ ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → (𝑥𝑦 𝐹 ≠ ∅))))
117, 10bitr4id 290 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → ((𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ (𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅))))
1211albidv 1923 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ∀𝑥(𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅))))
13 df-ral 3069 . . . . . . . 8 (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ↔ ∀𝑥(𝑥𝐹 → (𝑥𝑦 𝐹 ≠ ∅)))
1412, 13bitr4di 289 . . . . . . 7 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) ↔ ∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅)))
15 0nelfb 22982 . . . . . . . . . . . . 13 (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹)
16 eleq1 2826 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝑦𝐹 ↔ ∅ ∈ 𝐹))
1716notbid 318 . . . . . . . . . . . . 13 (𝑦 = ∅ → (¬ 𝑦𝐹 ↔ ¬ ∅ ∈ 𝐹))
1815, 17syl5ibrcom 246 . . . . . . . . . . . 12 (𝐹 ∈ (fBas‘𝐵) → (𝑦 = ∅ → ¬ 𝑦𝐹))
1918necon2ad 2958 . . . . . . . . . . 11 (𝐹 ∈ (fBas‘𝐵) → (𝑦𝐹𝑦 ≠ ∅))
2019imp 407 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝑦 ≠ ∅)
21 ssn0 4334 . . . . . . . . . . 11 ((𝑦 𝐹𝑦 ≠ ∅) → 𝐹 ≠ ∅)
2221ex 413 . . . . . . . . . 10 (𝑦 𝐹 → (𝑦 ≠ ∅ → 𝐹 ≠ ∅))
2320, 22syl5com 31 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑦 𝐹 𝐹 ≠ ∅))
2423a1dd 50 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑦 𝐹 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅)))
25 ssint 4895 . . . . . . . . . . . 12 (𝑦 𝐹 ↔ ∀𝑧𝐹 𝑦𝑧)
2625notbii 320 . . . . . . . . . . 11 𝑦 𝐹 ↔ ¬ ∀𝑧𝐹 𝑦𝑧)
27 rexnal 3169 . . . . . . . . . . 11 (∃𝑧𝐹 ¬ 𝑦𝑧 ↔ ¬ ∀𝑧𝐹 𝑦𝑧)
2826, 27bitr4i 277 . . . . . . . . . 10 𝑦 𝐹 ↔ ∃𝑧𝐹 ¬ 𝑦𝑧)
29 fbasssin 22987 . . . . . . . . . . . . 13 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹𝑧𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
30 nssinpss 4190 . . . . . . . . . . . . . . . 16 𝑦𝑧 ↔ (𝑦𝑧) ⊊ 𝑦)
31 sspsstr 4040 . . . . . . . . . . . . . . . 16 ((𝑥 ⊆ (𝑦𝑧) ∧ (𝑦𝑧) ⊊ 𝑦) → 𝑥𝑦)
3230, 31sylan2b 594 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ (𝑦𝑧) ∧ ¬ 𝑦𝑧) → 𝑥𝑦)
3332expcom 414 . . . . . . . . . . . . . 14 𝑦𝑧 → (𝑥 ⊆ (𝑦𝑧) → 𝑥𝑦))
3433reximdv 3202 . . . . . . . . . . . . 13 𝑦𝑧 → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥𝑦))
3529, 34syl5com 31 . . . . . . . . . . . 12 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹𝑧𝐹) → (¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦))
36353expia 1120 . . . . . . . . . . 11 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (𝑧𝐹 → (¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦)))
3736rexlimdv 3212 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∃𝑧𝐹 ¬ 𝑦𝑧 → ∃𝑥𝐹 𝑥𝑦))
3828, 37syl5bi 241 . . . . . . . . 9 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (¬ 𝑦 𝐹 → ∃𝑥𝐹 𝑥𝑦))
39 r19.29 3184 . . . . . . . . . . 11 ((∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ∧ ∃𝑥𝐹 𝑥𝑦) → ∃𝑥𝐹 ((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦))
40 id 22 . . . . . . . . . . . . 13 ((𝑥𝑦 𝐹 ≠ ∅) → (𝑥𝑦 𝐹 ≠ ∅))
4140imp 407 . . . . . . . . . . . 12 (((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦) → 𝐹 ≠ ∅)
4241rexlimivw 3211 . . . . . . . . . . 11 (∃𝑥𝐹 ((𝑥𝑦 𝐹 ≠ ∅) ∧ 𝑥𝑦) → 𝐹 ≠ ∅)
4339, 42syl 17 . . . . . . . . . 10 ((∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) ∧ ∃𝑥𝐹 𝑥𝑦) → 𝐹 ≠ ∅)
4443expcom 414 . . . . . . . . 9 (∃𝑥𝐹 𝑥𝑦 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅))
4538, 44syl6 35 . . . . . . . 8 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (¬ 𝑦 𝐹 → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅)))
4624, 45pm2.61d 179 . . . . . . 7 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥𝐹 (𝑥𝑦 𝐹 ≠ ∅) → 𝐹 ≠ ∅))
4714, 46sylbid 239 . . . . . 6 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → 𝐹 ≠ ∅))
4847com12 32 . . . . 5 (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅))
4948a1i 11 . . . 4 (𝑦 ∈ Fin → (∀𝑥(𝑥𝑦 → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑥𝐹) → 𝐹 ≠ ∅)) → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑦𝐹) → 𝐹 ≠ ∅)))
503, 6, 49findcard3 9057 . . 3 (𝑆 ∈ Fin → ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → 𝐹 ≠ ∅))
5150com12 32 . 2 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹) → (𝑆 ∈ Fin → 𝐹 ≠ ∅))
52513impia 1116 1 ((𝐹 ∈ (fBas‘𝐵) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  wss 3887  wpss 3888  c0 4256   cint 4879  cfv 6433  Fincfn 8733  fBascfbas 20585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fbas 20594
This theorem is referenced by:  filfinnfr  23028
  Copyright terms: Public domain W3C validator