Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssinc Structured version   Visualization version   GIF version

Theorem ssinc 45026
Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ssinc.1 (𝜑𝑁 ∈ (ℤ𝑀))
ssinc.2 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
Assertion
Ref Expression
ssinc (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀   𝑚,𝑁   𝜑,𝑚

Proof of Theorem ssinc
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssinc.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 12880 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
4 eluzelz 12885 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
51, 4syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
63, 5jca 511 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 eluzle 12888 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
81, 7syl 17 . . . 4 (𝜑𝑀𝑁)
95zred 12719 . . . . 5 (𝜑𝑁 ∈ ℝ)
109leidd 11826 . . . 4 (𝜑𝑁𝑁)
115, 8, 103jca 1127 . . 3 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁))
126, 11jca 511 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
13 id 22 . 2 (𝜑𝜑)
14 fveq2 6906 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1514sseq2d 4027 . . . 4 (𝑛 = 𝑀 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑀)))
1615imbi2d 340 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))))
17 fveq2 6906 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1817sseq2d 4027 . . . 4 (𝑛 = 𝑚 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑚)))
1918imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚))))
20 fveq2 6906 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹𝑛) = (𝐹‘(𝑚 + 1)))
2120sseq2d 4027 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1))))
2221imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))))
23 fveq2 6906 . . . . 5 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
2423sseq2d 4027 . . . 4 (𝑛 = 𝑁 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑁)))
2524imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))))
26 ssidd 4018 . . . 4 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))
2726a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀)))
28 simpr 484 . . . . . . 7 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → 𝜑)
29 simpl 482 . . . . . . 7 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)))
30 pm3.35 803 . . . . . . 7 ((𝜑 ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚))) → (𝐹𝑀) ⊆ (𝐹𝑚))
3128, 29, 30syl2anc 584 . . . . . 6 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹𝑚))
32313adant1 1129 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹𝑚))
33 simpr 484 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝜑)
34 simplll 775 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ)
35 simplr1 1214 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ)
36 simplr2 1215 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀𝑚)
3734, 35, 363jca 1127 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
38 eluz2 12881 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
3937, 38sylibr 234 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ𝑀))
40 simpllr 776 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ)
41 simplr3 1216 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁)
4239, 40, 413jca 1127 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
43 elfzo2 13698 . . . . . . . 8 (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
4442, 43sylibr 234 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁))
45 ssinc.2 . . . . . . 7 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
4633, 44, 45syl2anc 584 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
47463adant2 1130 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
4832, 47sstrd 4005 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))
49483exp 1118 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) → (𝜑 → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))))
5016, 19, 22, 25, 27, 49fzind 12713 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁)))
5112, 13, 50sylc 65 1 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cz 12610  cuz 12875  ..^cfzo 13690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691
This theorem is referenced by:  iunincfi  45033  meaiuninc3v  46439
  Copyright terms: Public domain W3C validator