Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssinc Structured version   Visualization version   GIF version

Theorem ssinc 42637
Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ssinc.1 (𝜑𝑁 ∈ (ℤ𝑀))
ssinc.2 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
Assertion
Ref Expression
ssinc (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀   𝑚,𝑁   𝜑,𝑚

Proof of Theorem ssinc
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssinc.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 12587 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
4 eluzelz 12592 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
51, 4syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
63, 5jca 512 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 eluzle 12595 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
81, 7syl 17 . . . 4 (𝜑𝑀𝑁)
95zred 12426 . . . . 5 (𝜑𝑁 ∈ ℝ)
109leidd 11541 . . . 4 (𝜑𝑁𝑁)
115, 8, 103jca 1127 . . 3 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁))
126, 11jca 512 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
13 id 22 . 2 (𝜑𝜑)
14 fveq2 6774 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1514sseq2d 3953 . . . 4 (𝑛 = 𝑀 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑀)))
1615imbi2d 341 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))))
17 fveq2 6774 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1817sseq2d 3953 . . . 4 (𝑛 = 𝑚 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑚)))
1918imbi2d 341 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚))))
20 fveq2 6774 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹𝑛) = (𝐹‘(𝑚 + 1)))
2120sseq2d 3953 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1))))
2221imbi2d 341 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))))
23 fveq2 6774 . . . . 5 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
2423sseq2d 3953 . . . 4 (𝑛 = 𝑁 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑁)))
2524imbi2d 341 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))))
26 ssidd 3944 . . . 4 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))
2726a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀)))
28 simpr 485 . . . . . . 7 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → 𝜑)
29 simpl 483 . . . . . . 7 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)))
30 pm3.35 800 . . . . . . 7 ((𝜑 ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚))) → (𝐹𝑀) ⊆ (𝐹𝑚))
3128, 29, 30syl2anc 584 . . . . . 6 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹𝑚))
32313adant1 1129 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹𝑚))
33 simpr 485 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝜑)
34 simplll 772 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ)
35 simplr1 1214 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ)
36 simplr2 1215 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀𝑚)
3734, 35, 363jca 1127 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
38 eluz2 12588 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
3937, 38sylibr 233 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ𝑀))
40 simpllr 773 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ)
41 simplr3 1216 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁)
4239, 40, 413jca 1127 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
43 elfzo2 13390 . . . . . . . 8 (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
4442, 43sylibr 233 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁))
45 ssinc.2 . . . . . . 7 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
4633, 44, 45syl2anc 584 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
47463adant2 1130 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
4832, 47sstrd 3931 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))
49483exp 1118 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) → (𝜑 → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))))
5016, 19, 22, 25, 27, 49fzind 12418 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁)))
5112, 13, 50sylc 65 1 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cz 12319  cuz 12582  ..^cfzo 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383
This theorem is referenced by:  iunincfi  42644  meaiuninc3v  44022
  Copyright terms: Public domain W3C validator