Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssinc Structured version   Visualization version   GIF version

Theorem ssinc 43287
Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ssinc.1 (𝜑𝑁 ∈ (ℤ𝑀))
ssinc.2 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
Assertion
Ref Expression
ssinc (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀   𝑚,𝑁   𝜑,𝑚

Proof of Theorem ssinc
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssinc.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 12768 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
4 eluzelz 12773 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
51, 4syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
63, 5jca 512 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 eluzle 12776 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
81, 7syl 17 . . . 4 (𝜑𝑀𝑁)
95zred 12607 . . . . 5 (𝜑𝑁 ∈ ℝ)
109leidd 11721 . . . 4 (𝜑𝑁𝑁)
115, 8, 103jca 1128 . . 3 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁))
126, 11jca 512 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
13 id 22 . 2 (𝜑𝜑)
14 fveq2 6842 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1514sseq2d 3976 . . . 4 (𝑛 = 𝑀 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑀)))
1615imbi2d 340 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))))
17 fveq2 6842 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1817sseq2d 3976 . . . 4 (𝑛 = 𝑚 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑚)))
1918imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚))))
20 fveq2 6842 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹𝑛) = (𝐹‘(𝑚 + 1)))
2120sseq2d 3976 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1))))
2221imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))))
23 fveq2 6842 . . . . 5 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
2423sseq2d 3976 . . . 4 (𝑛 = 𝑁 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑁)))
2524imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))))
26 ssidd 3967 . . . 4 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))
2726a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀)))
28 simpr 485 . . . . . . 7 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → 𝜑)
29 simpl 483 . . . . . . 7 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)))
30 pm3.35 801 . . . . . . 7 ((𝜑 ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚))) → (𝐹𝑀) ⊆ (𝐹𝑚))
3128, 29, 30syl2anc 584 . . . . . 6 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹𝑚))
32313adant1 1130 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹𝑚))
33 simpr 485 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝜑)
34 simplll 773 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ)
35 simplr1 1215 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ)
36 simplr2 1216 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀𝑚)
3734, 35, 363jca 1128 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
38 eluz2 12769 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
3937, 38sylibr 233 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ𝑀))
40 simpllr 774 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ)
41 simplr3 1217 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁)
4239, 40, 413jca 1128 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
43 elfzo2 13575 . . . . . . . 8 (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
4442, 43sylibr 233 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁))
45 ssinc.2 . . . . . . 7 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
4633, 44, 45syl2anc 584 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
47463adant2 1131 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
4832, 47sstrd 3954 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))
49483exp 1119 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) → (𝜑 → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))))
5016, 19, 22, 25, 27, 49fzind 12601 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁)))
5112, 13, 50sylc 65 1 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910   class class class wbr 5105  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cz 12499  cuz 12763  ..^cfzo 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568
This theorem is referenced by:  iunincfi  43294  meaiuninc3v  44715
  Copyright terms: Public domain W3C validator