Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssinc Structured version   Visualization version   GIF version

Theorem ssinc 42215
Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ssinc.1 (𝜑𝑁 ∈ (ℤ𝑀))
ssinc.2 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
Assertion
Ref Expression
ssinc (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀   𝑚,𝑁   𝜑,𝑚

Proof of Theorem ssinc
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssinc.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 12341 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
4 eluzelz 12346 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
51, 4syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
63, 5jca 515 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 eluzle 12349 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
81, 7syl 17 . . . 4 (𝜑𝑀𝑁)
95zred 12180 . . . . 5 (𝜑𝑁 ∈ ℝ)
109leidd 11296 . . . 4 (𝜑𝑁𝑁)
115, 8, 103jca 1129 . . 3 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁))
126, 11jca 515 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
13 id 22 . 2 (𝜑𝜑)
14 fveq2 6686 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1514sseq2d 3919 . . . 4 (𝑛 = 𝑀 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑀)))
1615imbi2d 344 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))))
17 fveq2 6686 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1817sseq2d 3919 . . . 4 (𝑛 = 𝑚 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑚)))
1918imbi2d 344 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚))))
20 fveq2 6686 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹𝑛) = (𝐹‘(𝑚 + 1)))
2120sseq2d 3919 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1))))
2221imbi2d 344 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))))
23 fveq2 6686 . . . . 5 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
2423sseq2d 3919 . . . 4 (𝑛 = 𝑁 → ((𝐹𝑀) ⊆ (𝐹𝑛) ↔ (𝐹𝑀) ⊆ (𝐹𝑁)))
2524imbi2d 344 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑛)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))))
26 ssidd 3910 . . . 4 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))
2726a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀)))
28 simpr 488 . . . . . . 7 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → 𝜑)
29 simpl 486 . . . . . . 7 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)))
30 pm3.35 803 . . . . . . 7 ((𝜑 ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚))) → (𝐹𝑀) ⊆ (𝐹𝑚))
3128, 29, 30syl2anc 587 . . . . . 6 (((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹𝑚))
32313adant1 1131 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹𝑚))
33 simpr 488 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝜑)
34 simplll 775 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ)
35 simplr1 1216 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ)
36 simplr2 1217 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀𝑚)
3734, 35, 363jca 1129 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
38 eluz2 12342 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
3937, 38sylibr 237 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ𝑀))
40 simpllr 776 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ)
41 simplr3 1218 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁)
4239, 40, 413jca 1129 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
43 elfzo2 13144 . . . . . . . 8 (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
4442, 43sylibr 237 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁))
45 ssinc.2 . . . . . . 7 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
4633, 44, 45syl2anc 587 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
47463adant2 1132 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
4832, 47sstrd 3897 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) ∧ 𝜑) → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))
49483exp 1120 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) → ((𝜑 → (𝐹𝑀) ⊆ (𝐹𝑚)) → (𝜑 → (𝐹𝑀) ⊆ (𝐹‘(𝑚 + 1)))))
5016, 19, 22, 25, 27, 49fzind 12173 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁)))
5112, 13, 50sylc 65 1 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wss 3853   class class class wbr 5040  cfv 6349  (class class class)co 7182  1c1 10628   + caddc 10630   < clt 10765  cle 10766  cz 12074  cuz 12336  ..^cfzo 13136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-n0 11989  df-z 12075  df-uz 12337  df-fz 12994  df-fzo 13137
This theorem is referenced by:  iunincfi  42222  meaiuninc3v  43604
  Copyright terms: Public domain W3C validator