Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapssbi Structured version   Visualization version   GIF version

Theorem mapssbi 45256
Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mapssbi.a (𝜑𝐴𝑉)
mapssbi.b (𝜑𝐵𝑊)
mapssbi.c (𝜑𝐶𝑍)
mapssbi.n (𝜑𝐶 ≠ ∅)
Assertion
Ref Expression
mapssbi (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))

Proof of Theorem mapssbi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mapssbi.b . . . . 5 (𝜑𝐵𝑊)
21adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑊)
3 simpr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
4 mapss 8813 . . . 4 ((𝐵𝑊𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
52, 3, 4syl2anc 584 . . 3 ((𝜑𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
65ex 412 . 2 (𝜑 → (𝐴𝐵 → (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
7 simplr 768 . . . 4 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ ¬ 𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
8 nssrex 45129 . . . . . . . 8 𝐴𝐵 ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
98biimpi 216 . . . . . . 7 𝐴𝐵 → ∃𝑥𝐴 ¬ 𝑥𝐵)
109adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → ∃𝑥𝐴 ¬ 𝑥𝐵)
11 fconst6g 6712 . . . . . . . . . . . . 13 (𝑥𝐴 → (𝐶 × {𝑥}):𝐶𝐴)
1211adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐶 × {𝑥}):𝐶𝐴)
13 mapssbi.a . . . . . . . . . . . . . 14 (𝜑𝐴𝑉)
14 mapssbi.c . . . . . . . . . . . . . 14 (𝜑𝐶𝑍)
15 elmapg 8763 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐶𝑍) → ((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1613, 14, 15syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1716adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1812, 17mpbird 257 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐶 × {𝑥}) ∈ (𝐴m 𝐶))
19183adant3 1132 . . . . . . . . . 10 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝐶 × {𝑥}) ∈ (𝐴m 𝐶))
2014adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝐶𝑍)
211adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝐵𝑊)
22 mapssbi.n . . . . . . . . . . . . . . 15 (𝜑𝐶 ≠ ∅)
2322adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝐶 ≠ ∅)
24 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → (𝐶 × {𝑥}) ∈ (𝐵m 𝐶))
2520, 21, 23, 24snelmap 45125 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝑥𝐵)
2625adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑥𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝑥𝐵)
27 simplr 768 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑥𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → ¬ 𝑥𝐵)
2826, 27pm2.65da 816 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶))
29283adant2 1131 . . . . . . . . . 10 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶))
30 nelss 4000 . . . . . . . . . 10 (((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ∧ ¬ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
3119, 29, 30syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
32313exp 1119 . . . . . . . 8 (𝜑 → (𝑥𝐴 → (¬ 𝑥𝐵 → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))))
3332adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝑥𝐴 → (¬ 𝑥𝐵 → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))))
3433rexlimdv 3131 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → (∃𝑥𝐴 ¬ 𝑥𝐵 → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
3510, 34mpd 15 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
3635adantlr 715 . . . 4 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ ¬ 𝐴𝐵) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
377, 36condan 817 . . 3 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → 𝐴𝐵)
3837ex 412 . 2 (𝜑 → ((𝐴m 𝐶) ⊆ (𝐵m 𝐶) → 𝐴𝐵))
396, 38impbid 212 1 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  wne 2928  wrex 3056  wss 3902  c0 4283  {csn 4576   × cxp 5614  wf 6477  (class class class)co 7346  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator