Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapssbi Structured version   Visualization version   GIF version

Theorem mapssbi 41842
Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mapssbi.a (𝜑𝐴𝑉)
mapssbi.b (𝜑𝐵𝑊)
mapssbi.c (𝜑𝐶𝑍)
mapssbi.n (𝜑𝐶 ≠ ∅)
Assertion
Ref Expression
mapssbi (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))

Proof of Theorem mapssbi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mapssbi.b . . . . 5 (𝜑𝐵𝑊)
21adantr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑊)
3 simpr 488 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
4 mapss 8436 . . . 4 ((𝐵𝑊𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
52, 3, 4syl2anc 587 . . 3 ((𝜑𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
65ex 416 . 2 (𝜑 → (𝐴𝐵 → (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
7 simplr 768 . . . 4 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ ¬ 𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
8 nssrex 41722 . . . . . . . 8 𝐴𝐵 ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
98biimpi 219 . . . . . . 7 𝐴𝐵 → ∃𝑥𝐴 ¬ 𝑥𝐵)
109adantl 485 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → ∃𝑥𝐴 ¬ 𝑥𝐵)
11 fconst6g 6542 . . . . . . . . . . . . 13 (𝑥𝐴 → (𝐶 × {𝑥}):𝐶𝐴)
1211adantl 485 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐶 × {𝑥}):𝐶𝐴)
13 mapssbi.a . . . . . . . . . . . . . 14 (𝜑𝐴𝑉)
14 mapssbi.c . . . . . . . . . . . . . 14 (𝜑𝐶𝑍)
15 elmapg 8402 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐶𝑍) → ((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1613, 14, 15syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1716adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1812, 17mpbird 260 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐶 × {𝑥}) ∈ (𝐴m 𝐶))
19183adant3 1129 . . . . . . . . . 10 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝐶 × {𝑥}) ∈ (𝐴m 𝐶))
2014adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝐶𝑍)
211adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝐵𝑊)
22 mapssbi.n . . . . . . . . . . . . . . 15 (𝜑𝐶 ≠ ∅)
2322adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝐶 ≠ ∅)
24 simpr 488 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → (𝐶 × {𝑥}) ∈ (𝐵m 𝐶))
2520, 21, 23, 24snelmap 41718 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝑥𝐵)
2625adantlr 714 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑥𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝑥𝐵)
27 simplr 768 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑥𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → ¬ 𝑥𝐵)
2826, 27pm2.65da 816 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶))
29283adant2 1128 . . . . . . . . . 10 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶))
30 nelss 3978 . . . . . . . . . 10 (((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ∧ ¬ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
3119, 29, 30syl2anc 587 . . . . . . . . 9 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
32313exp 1116 . . . . . . . 8 (𝜑 → (𝑥𝐴 → (¬ 𝑥𝐵 → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))))
3332adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝑥𝐴 → (¬ 𝑥𝐵 → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))))
3433rexlimdv 3242 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → (∃𝑥𝐴 ¬ 𝑥𝐵 → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
3510, 34mpd 15 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
3635adantlr 714 . . . 4 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ ¬ 𝐴𝐵) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
377, 36condan 817 . . 3 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → 𝐴𝐵)
3837ex 416 . 2 (𝜑 → ((𝐴m 𝐶) ⊆ (𝐵m 𝐶) → 𝐴𝐵))
396, 38impbid 215 1 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  wne 2987  wrex 3107  wss 3881  c0 4243  {csn 4525   × cxp 5517  wf 6320  (class class class)co 7135  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator