| Step | Hyp | Ref
| Expression |
| 1 | | mapssbi.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ 𝑊) |
| 3 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) |
| 4 | | mapss 8866 |
. . . 4
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| 5 | 2, 3, 4 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| 6 | 5 | ex 412 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐵 → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) |
| 7 | | simplr 768 |
. . . 4
⊢ (((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ ¬ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| 8 | | nssrex 45052 |
. . . . . . . 8
⊢ (¬
𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| 9 | 8 | biimpi 216 |
. . . . . . 7
⊢ (¬
𝐴 ⊆ 𝐵 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| 10 | 9 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ⊆ 𝐵) → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| 11 | | fconst6g 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → (𝐶 × {𝑥}):𝐶⟶𝐴) |
| 12 | 11 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 × {𝑥}):𝐶⟶𝐴) |
| 13 | | mapssbi.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 14 | | mapssbi.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ∈ 𝑍) |
| 15 | | elmapg 8816 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑍) → ((𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶) ↔ (𝐶 × {𝑥}):𝐶⟶𝐴)) |
| 16 | 13, 14, 15 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶) ↔ (𝐶 × {𝑥}):𝐶⟶𝐴)) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶) ↔ (𝐶 × {𝑥}):𝐶⟶𝐴)) |
| 18 | 12, 17 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶)) |
| 19 | 18 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → (𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶)) |
| 20 | 14 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → 𝐶 ∈ 𝑍) |
| 21 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → 𝐵 ∈ 𝑊) |
| 22 | | mapssbi.n |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ≠ ∅) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → 𝐶 ≠ ∅) |
| 24 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) |
| 25 | 20, 21, 23, 24 | snelmap 45048 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → 𝑥 ∈ 𝐵) |
| 26 | 25 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑥 ∈ 𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → 𝑥 ∈ 𝐵) |
| 27 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑥 ∈ 𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → ¬ 𝑥 ∈ 𝐵) |
| 28 | 26, 27 | pm2.65da 816 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) |
| 29 | 28 | 3adant2 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) |
| 30 | | nelss 4020 |
. . . . . . . . . 10
⊢ (((𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶) ∧ ¬ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| 31 | 19, 29, 30 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| 32 | 31 | 3exp 1119 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)))) |
| 33 | 32 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 ⊆ 𝐵) → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)))) |
| 34 | 33 | rexlimdv 3134 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ⊆ 𝐵) → (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) |
| 35 | 10, 34 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ⊆ 𝐵) → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| 36 | 35 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ ¬ 𝐴 ⊆ 𝐵) → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| 37 | 7, 36 | condan 817 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) → 𝐴 ⊆ 𝐵) |
| 38 | 37 | ex 412 |
. 2
⊢ (𝜑 → ((𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶) → 𝐴 ⊆ 𝐵)) |
| 39 | 6, 38 | impbid 212 |
1
⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) |