Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapssbi Structured version   Visualization version   GIF version

Theorem mapssbi 43424
Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
mapssbi.a (𝜑𝐴𝑉)
mapssbi.b (𝜑𝐵𝑊)
mapssbi.c (𝜑𝐶𝑍)
mapssbi.n (𝜑𝐶 ≠ ∅)
Assertion
Ref Expression
mapssbi (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))

Proof of Theorem mapssbi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mapssbi.b . . . . 5 (𝜑𝐵𝑊)
21adantr 481 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑊)
3 simpr 485 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
4 mapss 8827 . . . 4 ((𝐵𝑊𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
52, 3, 4syl2anc 584 . . 3 ((𝜑𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
65ex 413 . 2 (𝜑 → (𝐴𝐵 → (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
7 simplr 767 . . . 4 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ ¬ 𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
8 nssrex 43286 . . . . . . . 8 𝐴𝐵 ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
98biimpi 215 . . . . . . 7 𝐴𝐵 → ∃𝑥𝐴 ¬ 𝑥𝐵)
109adantl 482 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → ∃𝑥𝐴 ¬ 𝑥𝐵)
11 fconst6g 6731 . . . . . . . . . . . . 13 (𝑥𝐴 → (𝐶 × {𝑥}):𝐶𝐴)
1211adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐶 × {𝑥}):𝐶𝐴)
13 mapssbi.a . . . . . . . . . . . . . 14 (𝜑𝐴𝑉)
14 mapssbi.c . . . . . . . . . . . . . 14 (𝜑𝐶𝑍)
15 elmapg 8778 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐶𝑍) → ((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1613, 14, 15syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1716adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ↔ (𝐶 × {𝑥}):𝐶𝐴))
1812, 17mpbird 256 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐶 × {𝑥}) ∈ (𝐴m 𝐶))
19183adant3 1132 . . . . . . . . . 10 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝐶 × {𝑥}) ∈ (𝐴m 𝐶))
2014adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝐶𝑍)
211adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝐵𝑊)
22 mapssbi.n . . . . . . . . . . . . . . 15 (𝜑𝐶 ≠ ∅)
2322adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝐶 ≠ ∅)
24 simpr 485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → (𝐶 × {𝑥}) ∈ (𝐵m 𝐶))
2520, 21, 23, 24snelmap 43282 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝑥𝐵)
2625adantlr 713 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑥𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → 𝑥𝐵)
27 simplr 767 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑥𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → ¬ 𝑥𝐵)
2826, 27pm2.65da 815 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶))
29283adant2 1131 . . . . . . . . . 10 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶))
30 nelss 4007 . . . . . . . . . 10 (((𝐶 × {𝑥}) ∈ (𝐴m 𝐶) ∧ ¬ (𝐶 × {𝑥}) ∈ (𝐵m 𝐶)) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
3119, 29, 30syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
32313exp 1119 . . . . . . . 8 (𝜑 → (𝑥𝐴 → (¬ 𝑥𝐵 → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))))
3332adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝑥𝐴 → (¬ 𝑥𝐵 → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))))
3433rexlimdv 3150 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → (∃𝑥𝐴 ¬ 𝑥𝐵 → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
3510, 34mpd 15 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
3635adantlr 713 . . . 4 (((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) ∧ ¬ 𝐴𝐵) → ¬ (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
377, 36condan 816 . . 3 ((𝜑 ∧ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)) → 𝐴𝐵)
3837ex 413 . 2 (𝜑 → ((𝐴m 𝐶) ⊆ (𝐵m 𝐶) → 𝐴𝐵))
396, 38impbid 211 1 (𝜑 → (𝐴𝐵 ↔ (𝐴m 𝐶) ⊆ (𝐵m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087  wcel 2106  wne 2943  wrex 3073  wss 3910  c0 4282  {csn 4586   × cxp 5631  wf 6492  (class class class)co 7357  m cmap 8765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator