Step | Hyp | Ref
| Expression |
1 | | mapssbi.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
2 | 1 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ 𝑊) |
3 | | simpr 488 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) |
4 | | mapss 8471 |
. . . 4
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
5 | 2, 3, 4 | syl2anc 587 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
6 | 5 | ex 416 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐵 → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) |
7 | | simplr 768 |
. . . 4
⊢ (((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ ¬ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
8 | | nssrex 42095 |
. . . . . . . 8
⊢ (¬
𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
9 | 8 | biimpi 219 |
. . . . . . 7
⊢ (¬
𝐴 ⊆ 𝐵 → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
10 | 9 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ⊆ 𝐵) → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
11 | | fconst6g 6553 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → (𝐶 × {𝑥}):𝐶⟶𝐴) |
12 | 11 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 × {𝑥}):𝐶⟶𝐴) |
13 | | mapssbi.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
14 | | mapssbi.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ∈ 𝑍) |
15 | | elmapg 8429 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑍) → ((𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶) ↔ (𝐶 × {𝑥}):𝐶⟶𝐴)) |
16 | 13, 14, 15 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶) ↔ (𝐶 × {𝑥}):𝐶⟶𝐴)) |
17 | 16 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶) ↔ (𝐶 × {𝑥}):𝐶⟶𝐴)) |
18 | 12, 17 | mpbird 260 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶)) |
19 | 18 | 3adant3 1129 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → (𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶)) |
20 | 14 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → 𝐶 ∈ 𝑍) |
21 | 1 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → 𝐵 ∈ 𝑊) |
22 | | mapssbi.n |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ≠ ∅) |
23 | 22 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → 𝐶 ≠ ∅) |
24 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) |
25 | 20, 21, 23, 24 | snelmap 42091 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → 𝑥 ∈ 𝐵) |
26 | 25 | adantlr 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑥 ∈ 𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → 𝑥 ∈ 𝐵) |
27 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑥 ∈ 𝐵) ∧ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → ¬ 𝑥 ∈ 𝐵) |
28 | 26, 27 | pm2.65da 816 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) |
29 | 28 | 3adant2 1128 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → ¬ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) |
30 | | nelss 3955 |
. . . . . . . . . 10
⊢ (((𝐶 × {𝑥}) ∈ (𝐴 ↑m 𝐶) ∧ ¬ (𝐶 × {𝑥}) ∈ (𝐵 ↑m 𝐶)) → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
31 | 19, 29, 30 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
32 | 31 | 3exp 1116 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)))) |
33 | 32 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 ⊆ 𝐵) → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)))) |
34 | 33 | rexlimdv 3207 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 ⊆ 𝐵) → (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) |
35 | 10, 34 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 ⊆ 𝐵) → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
36 | 35 | adantlr 714 |
. . . 4
⊢ (((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) ∧ ¬ 𝐴 ⊆ 𝐵) → ¬ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
37 | 7, 36 | condan 817 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) → 𝐴 ⊆ 𝐵) |
38 | 37 | ex 416 |
. 2
⊢ (𝜑 → ((𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶) → 𝐴 ⊆ 𝐵)) |
39 | 6, 38 | impbid 215 |
1
⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) |