![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsstr | Structured version Visualization version GIF version |
Description: If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
nsstr | ⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 4017 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) |
3 | 2 | adantll 713 | . 2 ⊢ (((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) |
4 | simpll 766 | . 2 ⊢ (((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) ∧ 𝐴 ⊆ 𝐶) → ¬ 𝐴 ⊆ 𝐵) | |
5 | 3, 4 | pm2.65da 816 | 1 ⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3993 |
This theorem is referenced by: mbfpsssmf 46704 |
Copyright terms: Public domain | W3C validator |