Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsstr | Structured version Visualization version GIF version |
Description: If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
nsstr | ⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3925 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) |
3 | 2 | adantll 710 | . 2 ⊢ (((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) |
4 | simpll 763 | . 2 ⊢ (((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) ∧ 𝐴 ⊆ 𝐶) → ¬ 𝐴 ⊆ 𝐵) | |
5 | 3, 4 | pm2.65da 813 | 1 ⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: mbfpsssmf 44205 |
Copyright terms: Public domain | W3C validator |