![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nsstr | Structured version Visualization version GIF version |
Description: If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
nsstr | ⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3990 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐶 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) |
3 | 2 | adantll 711 | . 2 ⊢ (((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) ∧ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) |
4 | simpll 764 | . 2 ⊢ (((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) ∧ 𝐴 ⊆ 𝐶) → ¬ 𝐴 ⊆ 𝐵) | |
5 | 3, 4 | pm2.65da 814 | 1 ⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 |
This theorem is referenced by: mbfpsssmf 45958 |
Copyright terms: Public domain | W3C validator |