![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfpsssmf | Structured version Visualization version GIF version |
Description: Real-valued measurable functions are a proper subset of sigma-measurable functions (w.r.t. the Lebesgue measure on the reals). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
mbfpsssmf.1 | ⊢ 𝑆 = dom vol |
Ref | Expression |
---|---|
mbfpsssmf | ⊢ (MblFn ∩ (ℝ ↑pm ℝ)) ⊊ (SMblFn‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4194 | . . . . 5 ⊢ (𝑓 ∈ (MblFn ∩ (ℝ ↑pm ℝ)) → 𝑓 ∈ MblFn) | |
2 | elinel2 4195 | . . . . . 6 ⊢ (𝑓 ∈ (MblFn ∩ (ℝ ↑pm ℝ)) → 𝑓 ∈ (ℝ ↑pm ℝ)) | |
3 | elpmrn 43904 | . . . . . 6 ⊢ (𝑓 ∈ (ℝ ↑pm ℝ) → ran 𝑓 ⊆ ℝ) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (MblFn ∩ (ℝ ↑pm ℝ)) → ran 𝑓 ⊆ ℝ) |
5 | mbfpsssmf.1 | . . . . 5 ⊢ 𝑆 = dom vol | |
6 | 1, 4, 5 | mbfresmf 45441 | . . . 4 ⊢ (𝑓 ∈ (MblFn ∩ (ℝ ↑pm ℝ)) → 𝑓 ∈ (SMblFn‘𝑆)) |
7 | 6 | ssriv 3985 | . . 3 ⊢ (MblFn ∩ (ℝ ↑pm ℝ)) ⊆ (SMblFn‘𝑆) |
8 | 5 | nsssmfmbf 45481 | . . . 4 ⊢ ¬ (SMblFn‘𝑆) ⊆ MblFn |
9 | 1 | ssriv 3985 | . . . 4 ⊢ (MblFn ∩ (ℝ ↑pm ℝ)) ⊆ MblFn |
10 | nsstr 43769 | . . . 4 ⊢ ((¬ (SMblFn‘𝑆) ⊆ MblFn ∧ (MblFn ∩ (ℝ ↑pm ℝ)) ⊆ MblFn) → ¬ (SMblFn‘𝑆) ⊆ (MblFn ∩ (ℝ ↑pm ℝ))) | |
11 | 8, 9, 10 | mp2an 690 | . . 3 ⊢ ¬ (SMblFn‘𝑆) ⊆ (MblFn ∩ (ℝ ↑pm ℝ)) |
12 | 7, 11 | pm3.2i 471 | . 2 ⊢ ((MblFn ∩ (ℝ ↑pm ℝ)) ⊆ (SMblFn‘𝑆) ∧ ¬ (SMblFn‘𝑆) ⊆ (MblFn ∩ (ℝ ↑pm ℝ))) |
13 | dfpss3 4085 | . 2 ⊢ ((MblFn ∩ (ℝ ↑pm ℝ)) ⊊ (SMblFn‘𝑆) ↔ ((MblFn ∩ (ℝ ↑pm ℝ)) ⊆ (SMblFn‘𝑆) ∧ ¬ (SMblFn‘𝑆) ⊆ (MblFn ∩ (ℝ ↑pm ℝ)))) | |
14 | 12, 13 | mpbir 230 | 1 ⊢ (MblFn ∩ (ℝ ↑pm ℝ)) ⊊ (SMblFn‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3946 ⊆ wss 3947 ⊊ wpss 3948 dom cdm 5675 ran crn 5676 ‘cfv 6540 (class class class)co 7405 ↑pm cpm 8817 ℝcr 11105 volcvol 24971 MblFncmbf 25122 SMblFncsmblfn 45397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cc 10426 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-rlim 15429 df-sum 15629 df-rest 17364 df-topgen 17385 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-top 22387 df-topon 22404 df-bases 22440 df-cmp 22882 df-ovol 24972 df-vol 24973 df-mbf 25127 df-salg 45011 df-smblfn 45398 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |