Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunincfi Structured version   Visualization version   GIF version

Theorem iunincfi 40203
Description: Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunincfi.1 (𝜑𝑁 ∈ (ℤ𝑀))
iunincfi.2 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
Assertion
Ref Expression
iunincfi (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑀   𝑛,𝑁   𝜑,𝑛

Proof of Theorem iunincfi
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4757 . . . . . . 7 (𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ↔ ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
21biimpi 208 . . . . . 6 (𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) → ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
32adantl 475 . . . . 5 ((𝜑𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)) → ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
4 elfzuz3 12656 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
54adantl 475 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑛))
6 simpll 757 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝜑)
7 elfzuz 12655 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
8 fzoss1 12814 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑀) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝑀...𝑁) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
109adantr 474 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
11 simpr 479 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑛..^𝑁))
1210, 11sseldd 3822 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑀..^𝑁))
1312adantll 704 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑀..^𝑁))
14 eleq1w 2842 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑛 ∈ (𝑀..^𝑁) ↔ 𝑚 ∈ (𝑀..^𝑁)))
1514anbi2d 622 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝜑𝑛 ∈ (𝑀..^𝑁)) ↔ (𝜑𝑚 ∈ (𝑀..^𝑁))))
16 fveq2 6446 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
17 fvoveq1 6945 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑚 + 1)))
1816, 17sseq12d 3853 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1))))
1915, 18imbi12d 336 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))))
20 iunincfi.2 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
2119, 20chvarv 2361 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
226, 13, 21syl2anc 579 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
235, 22ssinc 40195 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐹𝑛) ⊆ (𝐹𝑁))
24233adant3 1123 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (𝐹𝑁))
25 simp3 1129 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑛))
2624, 25sseldd 3822 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
27263exp 1109 . . . . . . 7 (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝐹𝑛) → 𝑥 ∈ (𝐹𝑁))))
2827rexlimdv 3212 . . . . . 6 (𝜑 → (∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛) → 𝑥 ∈ (𝐹𝑁)))
2928imp 397 . . . . 5 ((𝜑 ∧ ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
303, 29syldan 585 . . . 4 ((𝜑𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
3130ralrimiva 3148 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)𝑥 ∈ (𝐹𝑁))
32 dfss3 3810 . . 3 ( 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ⊆ (𝐹𝑁) ↔ ∀𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)𝑥 ∈ (𝐹𝑁))
3331, 32sylibr 226 . 2 (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ⊆ (𝐹𝑁))
34 iunincfi.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
35 eluzfz2 12666 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
3634, 35syl 17 . . 3 (𝜑𝑁 ∈ (𝑀...𝑁))
37 fveq2 6446 . . . 4 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
3837ssiun2s 4797 . . 3 (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑁) ⊆ 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛))
3936, 38syl 17 . 2 (𝜑 → (𝐹𝑁) ⊆ 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛))
4033, 39eqssd 3838 1 (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wrex 3091  wss 3792   ciun 4753  cfv 6135  (class class class)co 6922  1c1 10273   + caddc 10275  cuz 11992  ...cfz 12643  ..^cfzo 12784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785
This theorem is referenced by:  meaiuninclem  41621
  Copyright terms: Public domain W3C validator