Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunincfi Structured version   Visualization version   GIF version

Theorem iunincfi 41730
Description: Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunincfi.1 (𝜑𝑁 ∈ (ℤ𝑀))
iunincfi.2 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
Assertion
Ref Expression
iunincfi (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑀   𝑛,𝑁   𝜑,𝑛

Proof of Theorem iunincfi
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4885 . . . . . . 7 (𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ↔ ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
21biimpi 219 . . . . . 6 (𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) → ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
32adantl 485 . . . . 5 ((𝜑𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)) → ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
4 elfzuz3 12899 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
54adantl 485 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑛))
6 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝜑)
7 elfzuz 12898 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
8 fzoss1 13059 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑀) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝑀...𝑁) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
109adantr 484 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
11 simpr 488 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑛..^𝑁))
1210, 11sseldd 3916 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑀..^𝑁))
1312adantll 713 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑀..^𝑁))
14 eleq1w 2872 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑛 ∈ (𝑀..^𝑁) ↔ 𝑚 ∈ (𝑀..^𝑁)))
1514anbi2d 631 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝜑𝑛 ∈ (𝑀..^𝑁)) ↔ (𝜑𝑚 ∈ (𝑀..^𝑁))))
16 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
17 fvoveq1 7158 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑚 + 1)))
1816, 17sseq12d 3948 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1))))
1915, 18imbi12d 348 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))))
20 iunincfi.2 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
2119, 20chvarvv 2005 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
226, 13, 21syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
235, 22ssinc 41723 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐹𝑛) ⊆ (𝐹𝑁))
24233adant3 1129 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (𝐹𝑁))
25 simp3 1135 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑛))
2624, 25sseldd 3916 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
27263exp 1116 . . . . . . 7 (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝐹𝑛) → 𝑥 ∈ (𝐹𝑁))))
2827rexlimdv 3242 . . . . . 6 (𝜑 → (∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛) → 𝑥 ∈ (𝐹𝑁)))
2928imp 410 . . . . 5 ((𝜑 ∧ ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
303, 29syldan 594 . . . 4 ((𝜑𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
3130ralrimiva 3149 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)𝑥 ∈ (𝐹𝑁))
32 dfss3 3903 . . 3 ( 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ⊆ (𝐹𝑁) ↔ ∀𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)𝑥 ∈ (𝐹𝑁))
3331, 32sylibr 237 . 2 (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ⊆ (𝐹𝑁))
34 iunincfi.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
35 eluzfz2 12910 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
3634, 35syl 17 . . 3 (𝜑𝑁 ∈ (𝑀...𝑁))
37 fveq2 6645 . . . 4 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
3837ssiun2s 4935 . . 3 (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑁) ⊆ 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛))
3936, 38syl 17 . 2 (𝜑 → (𝐹𝑁) ⊆ 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛))
4033, 39eqssd 3932 1 (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  wss 3881   ciun 4881  cfv 6324  (class class class)co 7135  1c1 10527   + caddc 10529  cuz 12231  ...cfz 12885  ..^cfzo 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029
This theorem is referenced by:  meaiuninclem  43119
  Copyright terms: Public domain W3C validator