Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunincfi Structured version   Visualization version   GIF version

Theorem iunincfi 41366
Description: Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunincfi.1 (𝜑𝑁 ∈ (ℤ𝑀))
iunincfi.2 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
Assertion
Ref Expression
iunincfi (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑀   𝑛,𝑁   𝜑,𝑛

Proof of Theorem iunincfi
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4926 . . . . . . 7 (𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ↔ ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
21biimpi 218 . . . . . 6 (𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) → ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
32adantl 484 . . . . 5 ((𝜑𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)) → ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
4 elfzuz3 12908 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
54adantl 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑛))
6 simpll 765 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝜑)
7 elfzuz 12907 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
8 fzoss1 13067 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑀) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝑀...𝑁) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
109adantr 483 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
11 simpr 487 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑛..^𝑁))
1210, 11sseldd 3971 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑀..^𝑁))
1312adantll 712 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑀..^𝑁))
14 eleq1w 2898 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑛 ∈ (𝑀..^𝑁) ↔ 𝑚 ∈ (𝑀..^𝑁)))
1514anbi2d 630 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝜑𝑛 ∈ (𝑀..^𝑁)) ↔ (𝜑𝑚 ∈ (𝑀..^𝑁))))
16 fveq2 6673 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
17 fvoveq1 7182 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑚 + 1)))
1816, 17sseq12d 4003 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1))))
1915, 18imbi12d 347 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))))
20 iunincfi.2 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
2119, 20chvarvv 2004 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
226, 13, 21syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
235, 22ssinc 41359 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐹𝑛) ⊆ (𝐹𝑁))
24233adant3 1128 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (𝐹𝑁))
25 simp3 1134 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑛))
2624, 25sseldd 3971 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
27263exp 1115 . . . . . . 7 (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝐹𝑛) → 𝑥 ∈ (𝐹𝑁))))
2827rexlimdv 3286 . . . . . 6 (𝜑 → (∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛) → 𝑥 ∈ (𝐹𝑁)))
2928imp 409 . . . . 5 ((𝜑 ∧ ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
303, 29syldan 593 . . . 4 ((𝜑𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
3130ralrimiva 3185 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)𝑥 ∈ (𝐹𝑁))
32 dfss3 3959 . . 3 ( 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ⊆ (𝐹𝑁) ↔ ∀𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)𝑥 ∈ (𝐹𝑁))
3331, 32sylibr 236 . 2 (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ⊆ (𝐹𝑁))
34 iunincfi.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
35 eluzfz2 12918 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
3634, 35syl 17 . . 3 (𝜑𝑁 ∈ (𝑀...𝑁))
37 fveq2 6673 . . . 4 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
3837ssiun2s 4975 . . 3 (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑁) ⊆ 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛))
3936, 38syl 17 . 2 (𝜑 → (𝐹𝑁) ⊆ 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛))
4033, 39eqssd 3987 1 (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  wss 3939   ciun 4922  cfv 6358  (class class class)co 7159  1c1 10541   + caddc 10543  cuz 12246  ...cfz 12895  ..^cfzo 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037
This theorem is referenced by:  meaiuninclem  42769
  Copyright terms: Public domain W3C validator