![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexanuz3 | Structured version Visualization version GIF version |
Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rexanuz3.1 | ⊢ Ⅎ𝑗𝜑 |
rexanuz3.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
rexanuz3.3 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) |
rexanuz3.4 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) |
rexanuz3.5 | ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) |
rexanuz3.6 | ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) |
Ref | Expression |
---|---|
rexanuz3 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexanuz3.3 | . . . 4 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) | |
2 | rexanuz3.4 | . . . 4 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) | |
3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
4 | rexanuz3.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 4 | rexanuz2 15398 | . . 3 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
6 | 3, 5 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) |
7 | rexanuz3.1 | . . 3 ⊢ Ⅎ𝑗𝜑 | |
8 | 4 | eleq2i 2836 | . . . . . . . . . 10 ⊢ (𝑗 ∈ 𝑍 ↔ 𝑗 ∈ (ℤ≥‘𝑀)) |
9 | 8 | biimpi 216 | . . . . . . . . 9 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑀)) |
10 | eluzelz 12913 | . . . . . . . . 9 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
11 | uzid 12918 | . . . . . . . . 9 ⊢ (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ≥‘𝑗)) | |
12 | 9, 10, 11 | 3syl 18 | . . . . . . . 8 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) |
13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → 𝑗 ∈ (ℤ≥‘𝑗)) |
14 | simpr 484 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) | |
15 | rexanuz3.5 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) | |
16 | rexanuz3.6 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) | |
17 | 15, 16 | anbi12d 631 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏))) |
18 | 17 | rspcva 3633 | . . . . . . 7 ⊢ ((𝑗 ∈ (ℤ≥‘𝑗) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → (𝜃 ∧ 𝜏)) |
19 | 13, 14, 18 | syl2anc 583 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → (𝜃 ∧ 𝜏)) |
20 | 19 | adantll 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → (𝜃 ∧ 𝜏)) |
21 | 20 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) → (𝜃 ∧ 𝜏))) |
22 | 21 | ex 412 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) → (𝜃 ∧ 𝜏)))) |
23 | 7, 22 | reximdai 3267 | . 2 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏))) |
24 | 6, 23 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ‘cfv 6573 ℤcz 12639 ℤ≥cuz 12903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-neg 11523 df-z 12640 df-uz 12904 |
This theorem is referenced by: smflimlem4 46695 |
Copyright terms: Public domain | W3C validator |