Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexanuz3 Structured version   Visualization version   GIF version

Theorem rexanuz3 44087
Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
rexanuz3.1 𝑗𝜑
rexanuz3.2 𝑍 = (ℤ𝑀)
rexanuz3.3 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)
rexanuz3.4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
rexanuz3.5 (𝑘 = 𝑗 → (𝜒𝜃))
rexanuz3.6 (𝑘 = 𝑗 → (𝜓𝜏))
Assertion
Ref Expression
rexanuz3 (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑍,𝑘   𝜒,𝑗   𝜓,𝑗   𝜏,𝑘   𝜃,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑗)   𝜏(𝑗)   𝑀(𝑘)

Proof of Theorem rexanuz3
StepHypRef Expression
1 rexanuz3.3 . . . 4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)
2 rexanuz3.4 . . . 4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
31, 2jca 512 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
4 rexanuz3.2 . . . 4 𝑍 = (ℤ𝑀)
54rexanuz2 15300 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
63, 5sylibr 233 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓))
7 rexanuz3.1 . . 3 𝑗𝜑
84eleq2i 2825 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
98biimpi 215 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
10 eluzelz 12836 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
11 uzid 12841 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
129, 10, 113syl 18 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
1312adantr 481 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → 𝑗 ∈ (ℤ𝑗))
14 simpr 485 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓))
15 rexanuz3.5 . . . . . . . . 9 (𝑘 = 𝑗 → (𝜒𝜃))
16 rexanuz3.6 . . . . . . . . 9 (𝑘 = 𝑗 → (𝜓𝜏))
1715, 16anbi12d 631 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜒𝜓) ↔ (𝜃𝜏)))
1817rspcva 3610 . . . . . . 7 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
1913, 14, 18syl2anc 584 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
2019adantll 712 . . . . 5 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
2120ex 413 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → (𝜃𝜏)))
2221ex 413 . . 3 (𝜑 → (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → (𝜃𝜏))))
237, 22reximdai 3258 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → ∃𝑗𝑍 (𝜃𝜏)))
246, 23mpd 15 1 (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wral 3061  wrex 3070  cfv 6543  cz 12562  cuz 12826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-neg 11451  df-z 12563  df-uz 12827
This theorem is referenced by:  smflimlem4  45789
  Copyright terms: Public domain W3C validator