Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexanuz3 Structured version   Visualization version   GIF version

Theorem rexanuz3 45087
Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
rexanuz3.1 𝑗𝜑
rexanuz3.2 𝑍 = (ℤ𝑀)
rexanuz3.3 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)
rexanuz3.4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
rexanuz3.5 (𝑘 = 𝑗 → (𝜒𝜃))
rexanuz3.6 (𝑘 = 𝑗 → (𝜓𝜏))
Assertion
Ref Expression
rexanuz3 (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑍,𝑘   𝜒,𝑗   𝜓,𝑗   𝜏,𝑘   𝜃,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑗)   𝜏(𝑗)   𝑀(𝑘)

Proof of Theorem rexanuz3
StepHypRef Expression
1 rexanuz3.3 . . . 4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)
2 rexanuz3.4 . . . 4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
31, 2jca 511 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
4 rexanuz3.2 . . . 4 𝑍 = (ℤ𝑀)
54rexanuz2 15373 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
63, 5sylibr 234 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓))
7 rexanuz3.1 . . 3 𝑗𝜑
84eleq2i 2827 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
98biimpi 216 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
10 eluzelz 12867 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
11 uzid 12872 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
129, 10, 113syl 18 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
1312adantr 480 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → 𝑗 ∈ (ℤ𝑗))
14 simpr 484 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓))
15 rexanuz3.5 . . . . . . . . 9 (𝑘 = 𝑗 → (𝜒𝜃))
16 rexanuz3.6 . . . . . . . . 9 (𝑘 = 𝑗 → (𝜓𝜏))
1715, 16anbi12d 632 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜒𝜓) ↔ (𝜃𝜏)))
1817rspcva 3604 . . . . . . 7 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
1913, 14, 18syl2anc 584 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
2019adantll 714 . . . . 5 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
2120ex 412 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → (𝜃𝜏)))
2221ex 412 . . 3 (𝜑 → (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → (𝜃𝜏))))
237, 22reximdai 3248 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → ∃𝑗𝑍 (𝜃𝜏)))
246, 23mpd 15 1 (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3052  wrex 3061  cfv 6536  cz 12593  cuz 12857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-neg 11474  df-z 12594  df-uz 12858
This theorem is referenced by:  smflimlem4  46770
  Copyright terms: Public domain W3C validator