Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexanuz3 Structured version   Visualization version   GIF version

Theorem rexanuz3 45054
Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
rexanuz3.1 𝑗𝜑
rexanuz3.2 𝑍 = (ℤ𝑀)
rexanuz3.3 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)
rexanuz3.4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
rexanuz3.5 (𝑘 = 𝑗 → (𝜒𝜃))
rexanuz3.6 (𝑘 = 𝑗 → (𝜓𝜏))
Assertion
Ref Expression
rexanuz3 (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑍,𝑘   𝜒,𝑗   𝜓,𝑗   𝜏,𝑘   𝜃,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑗)   𝜏(𝑗)   𝑀(𝑘)

Proof of Theorem rexanuz3
StepHypRef Expression
1 rexanuz3.3 . . . 4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)
2 rexanuz3.4 . . . 4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
31, 2jca 511 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
4 rexanuz3.2 . . . 4 𝑍 = (ℤ𝑀)
54rexanuz2 15357 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
63, 5sylibr 234 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓))
7 rexanuz3.1 . . 3 𝑗𝜑
84eleq2i 2825 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
98biimpi 216 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
10 eluzelz 12855 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
11 uzid 12860 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
129, 10, 113syl 18 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
1312adantr 480 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → 𝑗 ∈ (ℤ𝑗))
14 simpr 484 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓))
15 rexanuz3.5 . . . . . . . . 9 (𝑘 = 𝑗 → (𝜒𝜃))
16 rexanuz3.6 . . . . . . . . 9 (𝑘 = 𝑗 → (𝜓𝜏))
1715, 16anbi12d 632 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜒𝜓) ↔ (𝜃𝜏)))
1817rspcva 3597 . . . . . . 7 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
1913, 14, 18syl2anc 584 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
2019adantll 714 . . . . 5 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
2120ex 412 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → (𝜃𝜏)))
2221ex 412 . . 3 (𝜑 → (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → (𝜃𝜏))))
237, 22reximdai 3242 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → ∃𝑗𝑍 (𝜃𝜏)))
246, 23mpd 15 1 (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wnf 1782  wcel 2107  wral 3050  wrex 3059  cfv 6528  cz 12581  cuz 12845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-pre-lttri 11196  ax-pre-lttrn 11197
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-po 5559  df-so 5560  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-neg 11462  df-z 12582  df-uz 12846
This theorem is referenced by:  smflimlem4  46739
  Copyright terms: Public domain W3C validator