| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexanuz3 | Structured version Visualization version GIF version | ||
| Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rexanuz3.1 | ⊢ Ⅎ𝑗𝜑 |
| rexanuz3.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| rexanuz3.3 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) |
| rexanuz3.4 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) |
| rexanuz3.5 | ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) |
| rexanuz3.6 | ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| rexanuz3 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexanuz3.3 | . . . 4 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) | |
| 2 | rexanuz3.4 | . . . 4 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| 4 | rexanuz3.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 4 | rexanuz2 15257 | . . 3 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| 6 | 3, 5 | sylibr 234 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) |
| 7 | rexanuz3.1 | . . 3 ⊢ Ⅎ𝑗𝜑 | |
| 8 | 4 | eleq2i 2823 | . . . . . . . . . 10 ⊢ (𝑗 ∈ 𝑍 ↔ 𝑗 ∈ (ℤ≥‘𝑀)) |
| 9 | 8 | biimpi 216 | . . . . . . . . 9 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 10 | eluzelz 12742 | . . . . . . . . 9 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
| 11 | uzid 12747 | . . . . . . . . 9 ⊢ (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ≥‘𝑗)) | |
| 12 | 9, 10, 11 | 3syl 18 | . . . . . . . 8 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) |
| 13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → 𝑗 ∈ (ℤ≥‘𝑗)) |
| 14 | simpr 484 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) | |
| 15 | rexanuz3.5 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) | |
| 16 | rexanuz3.6 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) | |
| 17 | 15, 16 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏))) |
| 18 | 17 | rspcva 3575 | . . . . . . 7 ⊢ ((𝑗 ∈ (ℤ≥‘𝑗) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → (𝜃 ∧ 𝜏)) |
| 19 | 13, 14, 18 | syl2anc 584 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → (𝜃 ∧ 𝜏)) |
| 20 | 19 | adantll 714 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → (𝜃 ∧ 𝜏)) |
| 21 | 20 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) → (𝜃 ∧ 𝜏))) |
| 22 | 21 | ex 412 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) → (𝜃 ∧ 𝜏)))) |
| 23 | 7, 22 | reximdai 3234 | . 2 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏))) |
| 24 | 6, 23 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ‘cfv 6481 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 |
| This theorem is referenced by: smflimlem4 46818 |
| Copyright terms: Public domain | W3C validator |