Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexanuz3 | Structured version Visualization version GIF version |
Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rexanuz3.1 | ⊢ Ⅎ𝑗𝜑 |
rexanuz3.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
rexanuz3.3 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) |
rexanuz3.4 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) |
rexanuz3.5 | ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) |
rexanuz3.6 | ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) |
Ref | Expression |
---|---|
rexanuz3 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexanuz3.3 | . . . 4 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) | |
2 | rexanuz3.4 | . . . 4 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) | |
3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
4 | rexanuz3.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 4 | rexanuz2 14989 | . . 3 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
6 | 3, 5 | sylibr 233 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) |
7 | rexanuz3.1 | . . 3 ⊢ Ⅎ𝑗𝜑 | |
8 | 4 | eleq2i 2830 | . . . . . . . . . 10 ⊢ (𝑗 ∈ 𝑍 ↔ 𝑗 ∈ (ℤ≥‘𝑀)) |
9 | 8 | biimpi 215 | . . . . . . . . 9 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑀)) |
10 | eluzelz 12521 | . . . . . . . . 9 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
11 | uzid 12526 | . . . . . . . . 9 ⊢ (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ≥‘𝑗)) | |
12 | 9, 10, 11 | 3syl 18 | . . . . . . . 8 ⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) |
13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → 𝑗 ∈ (ℤ≥‘𝑗)) |
14 | simpr 484 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) | |
15 | rexanuz3.5 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) | |
16 | rexanuz3.6 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) | |
17 | 15, 16 | anbi12d 630 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏))) |
18 | 17 | rspcva 3550 | . . . . . . 7 ⊢ ((𝑗 ∈ (ℤ≥‘𝑗) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → (𝜃 ∧ 𝜏)) |
19 | 13, 14, 18 | syl2anc 583 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → (𝜃 ∧ 𝜏)) |
20 | 19 | adantll 710 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓)) → (𝜃 ∧ 𝜏)) |
21 | 20 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) → (𝜃 ∧ 𝜏))) |
22 | 21 | ex 412 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) → (𝜃 ∧ 𝜏)))) |
23 | 7, 22 | reximdai 3239 | . 2 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜒 ∧ 𝜓) → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏))) |
24 | 6, 23 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ‘cfv 6418 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: smflimlem4 44196 |
Copyright terms: Public domain | W3C validator |