Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexanuz3 Structured version   Visualization version   GIF version

Theorem rexanuz3 40092
Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
rexanuz3.1 𝑗𝜑
rexanuz3.2 𝑍 = (ℤ𝑀)
rexanuz3.3 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)
rexanuz3.4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
rexanuz3.5 (𝑘 = 𝑗 → (𝜒𝜃))
rexanuz3.6 (𝑘 = 𝑗 → (𝜓𝜏))
Assertion
Ref Expression
rexanuz3 (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑍,𝑘   𝜒,𝑗   𝜓,𝑗   𝜏,𝑘   𝜃,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑗)   𝜏(𝑗)   𝑀(𝑘)

Proof of Theorem rexanuz3
StepHypRef Expression
1 rexanuz3.3 . . . 4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒)
2 rexanuz3.4 . . . 4 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓)
31, 2jca 509 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
4 rexanuz3.2 . . . 4 𝑍 = (ℤ𝑀)
54rexanuz2 14466 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜒 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓))
63, 5sylibr 226 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓))
7 rexanuz3.1 . . 3 𝑗𝜑
84eleq2i 2898 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
98biimpi 208 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
10 eluzelz 11978 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
11 uzid 11983 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
129, 10, 113syl 18 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
1312adantr 474 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → 𝑗 ∈ (ℤ𝑗))
14 simpr 479 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓))
15 rexanuz3.5 . . . . . . . . 9 (𝑘 = 𝑗 → (𝜒𝜃))
16 rexanuz3.6 . . . . . . . . 9 (𝑘 = 𝑗 → (𝜓𝜏))
1715, 16anbi12d 626 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜒𝜓) ↔ (𝜃𝜏)))
1817rspcva 3524 . . . . . . 7 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
1913, 14, 18syl2anc 581 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
2019adantll 707 . . . . 5 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓)) → (𝜃𝜏))
2120ex 403 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → (𝜃𝜏)))
2221ex 403 . . 3 (𝜑 → (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → (𝜃𝜏))))
237, 22reximdai 3220 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜒𝜓) → ∃𝑗𝑍 (𝜃𝜏)))
246, 23mpd 15 1 (𝜑 → ∃𝑗𝑍 (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wnf 1884  wcel 2166  wral 3117  wrex 3118  cfv 6123  cz 11704  cuz 11968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-pre-lttri 10326  ax-pre-lttrn 10327
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-neg 10588  df-z 11705  df-uz 11969
This theorem is referenced by:  smflimlem4  41776
  Copyright terms: Public domain W3C validator