![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfunsn | Structured version Visualization version GIF version |
Description: If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfunsn | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2581 | . . . . . . 7 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦) | |
2 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
3 | 2 | brresi 6018 | . . . . . . . . 9 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)) |
4 | velsn 4664 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
5 | breq1 5169 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
6 | 4, 5 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) |
7 | 6 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) → 𝐴𝐹𝑦) |
8 | 3, 7 | sylbi 217 | . . . . . . . 8 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 → 𝐴𝐹𝑦) |
9 | 8 | moimi 2548 | . . . . . . 7 ⊢ (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
11 | tz6.12-2 6908 | . . . . . 6 ⊢ (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹‘𝐴) = ∅) | |
12 | 10, 11 | nsyl4 158 | . . . . 5 ⊢ (¬ (𝐹‘𝐴) = ∅ → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
13 | 12 | alrimiv 1926 | . . . 4 ⊢ (¬ (𝐹‘𝐴) = ∅ → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
14 | relres 6035 | . . . 4 ⊢ Rel (𝐹 ↾ {𝐴}) | |
15 | 13, 14 | jctil 519 | . . 3 ⊢ (¬ (𝐹‘𝐴) = ∅ → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) |
16 | dffun6 6586 | . . 3 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) | |
17 | 15, 16 | sylibr 234 | . 2 ⊢ (¬ (𝐹‘𝐴) = ∅ → Fun (𝐹 ↾ {𝐴})) |
18 | 17 | con1i 147 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 ∃!weu 2571 ∅c0 4352 {csn 4648 class class class wbr 5166 ↾ cres 5702 Rel wrel 5705 Fun wfun 6567 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: fvfundmfvn0 6963 dffv2 7017 afv2ndeffv0 47175 |
Copyright terms: Public domain | W3C validator |