MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfunsn Structured version   Visualization version   GIF version

Theorem nfunsn 6704
Description: If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)

Proof of Theorem nfunsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 2661 . . . . . . 7 (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦)
2 vex 3503 . . . . . . . . . 10 𝑦 ∈ V
32brresi 5861 . . . . . . . . 9 (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))
4 velsn 4580 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
5 breq1 5066 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
64, 5sylbi 218 . . . . . . . . . 10 (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦𝐴𝐹𝑦))
76biimpa 477 . . . . . . . . 9 ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) → 𝐴𝐹𝑦)
83, 7sylbi 218 . . . . . . . 8 (𝑥(𝐹 ↾ {𝐴})𝑦𝐴𝐹𝑦)
98moimi 2625 . . . . . . 7 (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
101, 9syl 17 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
11 tz6.12-2 6657 . . . . . 6 (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹𝐴) = ∅)
1210, 11nsyl4 161 . . . . 5 (¬ (𝐹𝐴) = ∅ → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
1312alrimiv 1921 . . . 4 (¬ (𝐹𝐴) = ∅ → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
14 relres 5881 . . . 4 Rel (𝐹 ↾ {𝐴})
1513, 14jctil 520 . . 3 (¬ (𝐹𝐴) = ∅ → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
16 dffun6 6367 . . 3 (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
1715, 16sylibr 235 . 2 (¬ (𝐹𝐴) = ∅ → Fun (𝐹 ↾ {𝐴}))
1817con1i 149 1 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wal 1528   = wceq 1530  wcel 2107  ∃*wmo 2618  ∃!weu 2651  c0 4295  {csn 4564   class class class wbr 5063  cres 5556  Rel wrel 5559  Fun wfun 6346  cfv 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-res 5566  df-iota 6312  df-fun 6354  df-fv 6360
This theorem is referenced by:  fvfundmfvn0  6705  dffv2  6753  afv2ndeffv0  43325
  Copyright terms: Public domain W3C validator