MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfunsn Structured version   Visualization version   GIF version

Theorem nfunsn 6930
Description: If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)

Proof of Theorem nfunsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 2572 . . . . . . 7 (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦)
2 vex 3478 . . . . . . . . . 10 𝑦 ∈ V
32brresi 5988 . . . . . . . . 9 (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦))
4 velsn 4643 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
5 breq1 5150 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
64, 5sylbi 216 . . . . . . . . . 10 (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦𝐴𝐹𝑦))
76biimpa 477 . . . . . . . . 9 ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) → 𝐴𝐹𝑦)
83, 7sylbi 216 . . . . . . . 8 (𝑥(𝐹 ↾ {𝐴})𝑦𝐴𝐹𝑦)
98moimi 2539 . . . . . . 7 (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
101, 9syl 17 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
11 tz6.12-2 6876 . . . . . 6 (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹𝐴) = ∅)
1210, 11nsyl4 158 . . . . 5 (¬ (𝐹𝐴) = ∅ → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
1312alrimiv 1930 . . . 4 (¬ (𝐹𝐴) = ∅ → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
14 relres 6008 . . . 4 Rel (𝐹 ↾ {𝐴})
1513, 14jctil 520 . . 3 (¬ (𝐹𝐴) = ∅ → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
16 dffun6 6553 . . 3 (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
1715, 16sylibr 233 . 2 (¬ (𝐹𝐴) = ∅ → Fun (𝐹 ↾ {𝐴}))
1817con1i 147 1 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  ∃*wmo 2532  ∃!weu 2562  c0 4321  {csn 4627   class class class wbr 5147  cres 5677  Rel wrel 5680  Fun wfun 6534  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-res 5687  df-iota 6492  df-fun 6542  df-fv 6548
This theorem is referenced by:  fvfundmfvn0  6931  dffv2  6983  afv2ndeffv0  45954
  Copyright terms: Public domain W3C validator