![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfunsn | Structured version Visualization version GIF version |
Description: If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfunsn | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2576 | . . . . . . 7 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦) | |
2 | vex 3482 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
3 | 2 | brresi 6009 | . . . . . . . . 9 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)) |
4 | velsn 4647 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
5 | breq1 5151 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
6 | 4, 5 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) |
7 | 6 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) → 𝐴𝐹𝑦) |
8 | 3, 7 | sylbi 217 | . . . . . . . 8 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 → 𝐴𝐹𝑦) |
9 | 8 | moimi 2543 | . . . . . . 7 ⊢ (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
11 | tz6.12-2 6895 | . . . . . 6 ⊢ (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹‘𝐴) = ∅) | |
12 | 10, 11 | nsyl4 158 | . . . . 5 ⊢ (¬ (𝐹‘𝐴) = ∅ → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
13 | 12 | alrimiv 1925 | . . . 4 ⊢ (¬ (𝐹‘𝐴) = ∅ → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
14 | relres 6026 | . . . 4 ⊢ Rel (𝐹 ↾ {𝐴}) | |
15 | 13, 14 | jctil 519 | . . 3 ⊢ (¬ (𝐹‘𝐴) = ∅ → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) |
16 | dffun6 6576 | . . 3 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) | |
17 | 15, 16 | sylibr 234 | . 2 ⊢ (¬ (𝐹‘𝐴) = ∅ → Fun (𝐹 ↾ {𝐴})) |
18 | 17 | con1i 147 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∃*wmo 2536 ∃!weu 2566 ∅c0 4339 {csn 4631 class class class wbr 5148 ↾ cres 5691 Rel wrel 5694 Fun wfun 6557 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-res 5701 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: fvfundmfvn0 6950 dffv2 7004 afv2ndeffv0 47210 |
Copyright terms: Public domain | W3C validator |