| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfunsn | Structured version Visualization version GIF version | ||
| Description: If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfunsn | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo 2571 | . . . . . . 7 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦) | |
| 2 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 3 | 2 | brresi 5939 | . . . . . . . . 9 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦)) |
| 4 | velsn 4593 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 5 | breq1 5095 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
| 6 | 4, 5 | sylbi 217 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) |
| 7 | 6 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑥𝐹𝑦) → 𝐴𝐹𝑦) |
| 8 | 3, 7 | sylbi 217 | . . . . . . . 8 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 → 𝐴𝐹𝑦) |
| 9 | 8 | moimi 2538 | . . . . . . 7 ⊢ (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
| 10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
| 11 | tz6.12-2 6810 | . . . . . 6 ⊢ (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹‘𝐴) = ∅) | |
| 12 | 10, 11 | nsyl4 158 | . . . . 5 ⊢ (¬ (𝐹‘𝐴) = ∅ → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
| 13 | 12 | alrimiv 1927 | . . . 4 ⊢ (¬ (𝐹‘𝐴) = ∅ → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
| 14 | relres 5956 | . . . 4 ⊢ Rel (𝐹 ↾ {𝐴}) | |
| 15 | 13, 14 | jctil 519 | . . 3 ⊢ (¬ (𝐹‘𝐴) = ∅ → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) |
| 16 | dffun6 6493 | . . 3 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) | |
| 17 | 15, 16 | sylibr 234 | . 2 ⊢ (¬ (𝐹‘𝐴) = ∅ → Fun (𝐹 ↾ {𝐴})) |
| 18 | 17 | con1i 147 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 ∃!weu 2561 ∅c0 4284 {csn 4577 class class class wbr 5092 ↾ cres 5621 Rel wrel 5624 Fun wfun 6476 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-res 5631 df-iota 6438 df-fun 6484 df-fv 6490 |
| This theorem is referenced by: fvfundmfvn0 6863 dffv2 6918 afv2ndeffv0 47248 |
| Copyright terms: Public domain | W3C validator |