MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card2on Structured version   Visualization version   GIF version

Theorem card2on 9243
Description: The alternate definition of the cardinal of a set given in cardval2 9680 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013.)
Assertion
Ref Expression
card2on {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On
Distinct variable group:   𝑥,𝐴

Proof of Theorem card2on
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6276 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
2 vex 3426 . . . . . . . . . . . . . 14 𝑧 ∈ V
3 onelss 6293 . . . . . . . . . . . . . . 15 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
43imp 406 . . . . . . . . . . . . . 14 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
5 ssdomg 8741 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
62, 4, 5mpsyl 68 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
71, 6jca 511 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → (𝑦 ∈ On ∧ 𝑦𝑧))
8 domsdomtr 8848 . . . . . . . . . . . . . 14 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
98anim2i 616 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ (𝑦𝑧𝑧𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
109anassrs 467 . . . . . . . . . . . 12 (((𝑦 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
117, 10sylan 579 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
1211exp31 419 . . . . . . . . . 10 (𝑧 ∈ On → (𝑦𝑧 → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1312com12 32 . . . . . . . . 9 (𝑦𝑧 → (𝑧 ∈ On → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1413impd 410 . . . . . . . 8 (𝑦𝑧 → ((𝑧 ∈ On ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴)))
15 breq1 5073 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615elrab 3617 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑧 ∈ On ∧ 𝑧𝐴))
17 breq1 5073 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817elrab 3617 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
1914, 16, 183imtr4g 295 . . . . . . 7 (𝑦𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2019imp 406 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
2120gen2 1800 . . . . 5 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
22 dftr2 5189 . . . . 5 (Tr {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2321, 22mpbir 230 . . . 4 Tr {𝑥 ∈ On ∣ 𝑥𝐴}
24 ssrab2 4009 . . . 4 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On
25 ordon 7604 . . . 4 Ord On
26 trssord 6268 . . . 4 ((Tr {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥𝐴})
2723, 24, 25, 26mp3an 1459 . . 3 Ord {𝑥 ∈ On ∣ 𝑥𝐴}
28 hartogs 9233 . . . 4 (𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
29 sdomdom 8723 . . . . . . 7 (𝑥𝐴𝑥𝐴)
3029a1i 11 . . . . . 6 (𝑥 ∈ On → (𝑥𝐴𝑥𝐴))
3130ss2rabi 4006 . . . . 5 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥𝐴}
32 ssexg 5242 . . . . 5 (({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On) → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
3331, 32mpan 686 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
34 elong 6259 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
3528, 33, 343syl 18 . . 3 (𝐴 ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
3627, 35mpbiri 257 . 2 (𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
37 0elon 6304 . . . 4 ∅ ∈ On
38 eleq1 2826 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ ∅ ∈ On))
3937, 38mpbiri 257 . . 3 ({𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
40 df-ne 2943 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅)
41 rabn0 4316 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
4240, 41bitr3i 276 . . . 4 (¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
43 relsdom 8698 . . . . . 6 Rel ≺
4443brrelex2i 5635 . . . . 5 (𝑥𝐴𝐴 ∈ V)
4544rexlimivw 3210 . . . 4 (∃𝑥 ∈ On 𝑥𝐴𝐴 ∈ V)
4642, 45sylbi 216 . . 3 (¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → 𝐴 ∈ V)
4739, 46nsyl4 158 . 2 𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
4836, 47pm2.61i 182 1 {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253   class class class wbr 5070  Tr wtr 5187  Ord word 6250  Oncon0 6251  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-oi 9199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator