MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card2on Structured version   Visualization version   GIF version

Theorem card2on 9313
Description: The alternate definition of the cardinal of a set given in cardval2 9749 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013.)
Assertion
Ref Expression
card2on {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On
Distinct variable group:   𝑥,𝐴

Proof of Theorem card2on
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6291 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
2 vex 3436 . . . . . . . . . . . . . 14 𝑧 ∈ V
3 onelss 6308 . . . . . . . . . . . . . . 15 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
43imp 407 . . . . . . . . . . . . . 14 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
5 ssdomg 8786 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
62, 4, 5mpsyl 68 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
71, 6jca 512 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → (𝑦 ∈ On ∧ 𝑦𝑧))
8 domsdomtr 8899 . . . . . . . . . . . . . 14 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
98anim2i 617 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ (𝑦𝑧𝑧𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
109anassrs 468 . . . . . . . . . . . 12 (((𝑦 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
117, 10sylan 580 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
1211exp31 420 . . . . . . . . . 10 (𝑧 ∈ On → (𝑦𝑧 → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1312com12 32 . . . . . . . . 9 (𝑦𝑧 → (𝑧 ∈ On → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1413impd 411 . . . . . . . 8 (𝑦𝑧 → ((𝑧 ∈ On ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴)))
15 breq1 5077 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615elrab 3624 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑧 ∈ On ∧ 𝑧𝐴))
17 breq1 5077 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817elrab 3624 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
1914, 16, 183imtr4g 296 . . . . . . 7 (𝑦𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2019imp 407 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
2120gen2 1799 . . . . 5 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
22 dftr2 5193 . . . . 5 (Tr {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2321, 22mpbir 230 . . . 4 Tr {𝑥 ∈ On ∣ 𝑥𝐴}
24 ssrab2 4013 . . . 4 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On
25 ordon 7627 . . . 4 Ord On
26 trssord 6283 . . . 4 ((Tr {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥𝐴})
2723, 24, 25, 26mp3an 1460 . . 3 Ord {𝑥 ∈ On ∣ 𝑥𝐴}
28 hartogs 9303 . . . 4 (𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
29 sdomdom 8768 . . . . . . 7 (𝑥𝐴𝑥𝐴)
3029a1i 11 . . . . . 6 (𝑥 ∈ On → (𝑥𝐴𝑥𝐴))
3130ss2rabi 4010 . . . . 5 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥𝐴}
32 ssexg 5247 . . . . 5 (({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On) → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
3331, 32mpan 687 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
34 elong 6274 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
3528, 33, 343syl 18 . . 3 (𝐴 ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
3627, 35mpbiri 257 . 2 (𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
37 0elon 6319 . . . 4 ∅ ∈ On
38 eleq1 2826 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ ∅ ∈ On))
3937, 38mpbiri 257 . . 3 ({𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
40 df-ne 2944 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅)
41 rabn0 4319 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
4240, 41bitr3i 276 . . . 4 (¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
43 relsdom 8740 . . . . . 6 Rel ≺
4443brrelex2i 5644 . . . . 5 (𝑥𝐴𝐴 ∈ V)
4544rexlimivw 3211 . . . 4 (∃𝑥 ∈ On 𝑥𝐴𝐴 ∈ V)
4642, 45sylbi 216 . . 3 (¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → 𝐴 ∈ V)
4739, 46nsyl4 158 . 2 𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
4836, 47pm2.61i 182 1 {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256   class class class wbr 5074  Tr wtr 5191  Ord word 6265  Oncon0 6266  cdom 8731  csdm 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-oi 9269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator