MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card2on Structured version   Visualization version   GIF version

Theorem card2on 9568
Description: The alternate definition of the cardinal of a set given in cardval2 10005 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013.)
Assertion
Ref Expression
card2on {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On
Distinct variable group:   𝑥,𝐴

Proof of Theorem card2on
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6377 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
2 vex 3463 . . . . . . . . . . . . . 14 𝑧 ∈ V
3 onelss 6394 . . . . . . . . . . . . . . 15 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
43imp 406 . . . . . . . . . . . . . 14 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
5 ssdomg 9014 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
62, 4, 5mpsyl 68 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
71, 6jca 511 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → (𝑦 ∈ On ∧ 𝑦𝑧))
8 domsdomtr 9126 . . . . . . . . . . . . . 14 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
98anim2i 617 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ (𝑦𝑧𝑧𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
109anassrs 467 . . . . . . . . . . . 12 (((𝑦 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
117, 10sylan 580 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
1211exp31 419 . . . . . . . . . 10 (𝑧 ∈ On → (𝑦𝑧 → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1312com12 32 . . . . . . . . 9 (𝑦𝑧 → (𝑧 ∈ On → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1413impd 410 . . . . . . . 8 (𝑦𝑧 → ((𝑧 ∈ On ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴)))
15 breq1 5122 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615elrab 3671 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑧 ∈ On ∧ 𝑧𝐴))
17 breq1 5122 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817elrab 3671 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
1914, 16, 183imtr4g 296 . . . . . . 7 (𝑦𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2019imp 406 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
2120gen2 1796 . . . . 5 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
22 dftr2 5231 . . . . 5 (Tr {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2321, 22mpbir 231 . . . 4 Tr {𝑥 ∈ On ∣ 𝑥𝐴}
24 ssrab2 4055 . . . 4 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On
25 ordon 7771 . . . 4 Ord On
26 trssord 6369 . . . 4 ((Tr {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥𝐴})
2723, 24, 25, 26mp3an 1463 . . 3 Ord {𝑥 ∈ On ∣ 𝑥𝐴}
28 hartogs 9558 . . . 4 (𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
29 sdomdom 8994 . . . . . . 7 (𝑥𝐴𝑥𝐴)
3029a1i 11 . . . . . 6 (𝑥 ∈ On → (𝑥𝐴𝑥𝐴))
3130ss2rabi 4052 . . . . 5 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥𝐴}
32 ssexg 5293 . . . . 5 (({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On) → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
3331, 32mpan 690 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
34 elong 6360 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
3528, 33, 343syl 18 . . 3 (𝐴 ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
3627, 35mpbiri 258 . 2 (𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
37 0elon 6407 . . . 4 ∅ ∈ On
38 eleq1 2822 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ ∅ ∈ On))
3937, 38mpbiri 258 . . 3 ({𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
40 df-ne 2933 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅)
41 rabn0 4364 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
4240, 41bitr3i 277 . . . 4 (¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
43 relsdom 8966 . . . . . 6 Rel ≺
4443brrelex2i 5711 . . . . 5 (𝑥𝐴𝐴 ∈ V)
4544rexlimivw 3137 . . . 4 (∃𝑥 ∈ On 𝑥𝐴𝐴 ∈ V)
4642, 45sylbi 217 . . 3 (¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → 𝐴 ∈ V)
4739, 46nsyl4 158 . 2 𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
4836, 47pm2.61i 182 1 {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wne 2932  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  c0 4308   class class class wbr 5119  Tr wtr 5229  Ord word 6351  Oncon0 6352  cdom 8957  csdm 8958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-oi 9524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator