Step | Hyp | Ref
| Expression |
1 | | onelon 6291 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → 𝑦 ∈ On) |
2 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
3 | | onelss 6308 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ On → (𝑦 ∈ 𝑧 → 𝑦 ⊆ 𝑧)) |
4 | 3 | imp 407 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → 𝑦 ⊆ 𝑧) |
5 | | ssdomg 8786 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ V → (𝑦 ⊆ 𝑧 → 𝑦 ≼ 𝑧)) |
6 | 2, 4, 5 | mpsyl 68 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → 𝑦 ≼ 𝑧) |
7 | 1, 6 | jca 512 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) → (𝑦 ∈ On ∧ 𝑦 ≼ 𝑧)) |
8 | | domsdomtr 8899 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ≼ 𝑧 ∧ 𝑧 ≺ 𝐴) → 𝑦 ≺ 𝐴) |
9 | 8 | anim2i 617 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ (𝑦 ≼ 𝑧 ∧ 𝑧 ≺ 𝐴)) → (𝑦 ∈ On ∧ 𝑦 ≺ 𝐴)) |
10 | 9 | anassrs 468 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ On ∧ 𝑦 ≼ 𝑧) ∧ 𝑧 ≺ 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≺ 𝐴)) |
11 | 7, 10 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ On ∧ 𝑦 ∈ 𝑧) ∧ 𝑧 ≺ 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≺ 𝐴)) |
12 | 11 | exp31 420 |
. . . . . . . . . 10
⊢ (𝑧 ∈ On → (𝑦 ∈ 𝑧 → (𝑧 ≺ 𝐴 → (𝑦 ∈ On ∧ 𝑦 ≺ 𝐴)))) |
13 | 12 | com12 32 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑧 → (𝑧 ∈ On → (𝑧 ≺ 𝐴 → (𝑦 ∈ On ∧ 𝑦 ≺ 𝐴)))) |
14 | 13 | impd 411 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑧 → ((𝑧 ∈ On ∧ 𝑧 ≺ 𝐴) → (𝑦 ∈ On ∧ 𝑦 ≺ 𝐴))) |
15 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ≺ 𝐴 ↔ 𝑧 ≺ 𝐴)) |
16 | 15 | elrab 3624 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ↔ (𝑧 ∈ On ∧ 𝑧 ≺ 𝐴)) |
17 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ≺ 𝐴 ↔ 𝑦 ≺ 𝐴)) |
18 | 17 | elrab 3624 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ↔ (𝑦 ∈ On ∧ 𝑦 ≺ 𝐴)) |
19 | 14, 16, 18 | 3imtr4g 296 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴})) |
20 | 19 | imp 407 |
. . . . . 6
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
21 | 20 | gen2 1799 |
. . . . 5
⊢
∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
22 | | dftr2 5193 |
. . . . 5
⊢ (Tr
{𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ↔ ∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴})) |
23 | 21, 22 | mpbir 230 |
. . . 4
⊢ Tr {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} |
24 | | ssrab2 4013 |
. . . 4
⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ⊆ On |
25 | | ordon 7627 |
. . . 4
⊢ Ord
On |
26 | | trssord 6283 |
. . . 4
⊢ ((Tr
{𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∧ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) |
27 | 23, 24, 25, 26 | mp3an 1460 |
. . 3
⊢ Ord
{𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} |
28 | | hartogs 9303 |
. . . 4
⊢ (𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) |
29 | | sdomdom 8768 |
. . . . . . 7
⊢ (𝑥 ≺ 𝐴 → 𝑥 ≼ 𝐴) |
30 | 29 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ On → (𝑥 ≺ 𝐴 → 𝑥 ≼ 𝐴)) |
31 | 30 | ss2rabi 4010 |
. . . . 5
⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} |
32 | | ssexg 5247 |
. . . . 5
⊢ (({𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∧ {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) → {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ V) |
33 | 31, 32 | mpan 687 |
. . . 4
⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On → {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ V) |
34 | | elong 6274 |
. . . 4
⊢ ({𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴})) |
35 | 28, 33, 34 | 3syl 18 |
. . 3
⊢ (𝐴 ∈ V → ({𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴})) |
36 | 27, 35 | mpbiri 257 |
. 2
⊢ (𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On) |
37 | | 0elon 6319 |
. . . 4
⊢ ∅
∈ On |
38 | | eleq1 2826 |
. . . 4
⊢ ({𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} = ∅ → ({𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On ↔ ∅ ∈
On)) |
39 | 37, 38 | mpbiri 257 |
. . 3
⊢ ({𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} = ∅ → {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On) |
40 | | df-ne 2944 |
. . . . 5
⊢ ({𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ≠ ∅ ↔ ¬ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} = ∅) |
41 | | rabn0 4319 |
. . . . 5
⊢ ({𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥 ≺ 𝐴) |
42 | 40, 41 | bitr3i 276 |
. . . 4
⊢ (¬
{𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} = ∅ ↔ ∃𝑥 ∈ On 𝑥 ≺ 𝐴) |
43 | | relsdom 8740 |
. . . . . 6
⊢ Rel
≺ |
44 | 43 | brrelex2i 5644 |
. . . . 5
⊢ (𝑥 ≺ 𝐴 → 𝐴 ∈ V) |
45 | 44 | rexlimivw 3211 |
. . . 4
⊢
(∃𝑥 ∈ On
𝑥 ≺ 𝐴 → 𝐴 ∈ V) |
46 | 42, 45 | sylbi 216 |
. . 3
⊢ (¬
{𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} = ∅ → 𝐴 ∈ V) |
47 | 39, 46 | nsyl4 158 |
. 2
⊢ (¬
𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On) |
48 | 36, 47 | pm2.61i 182 |
1
⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On |