MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  card2on Structured version   Visualization version   GIF version

Theorem card2on 9551
Description: The alternate definition of the cardinal of a set given in cardval2 9988 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013.)
Assertion
Ref Expression
card2on {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On
Distinct variable group:   𝑥,𝐴

Proof of Theorem card2on
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 6389 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦 ∈ On)
2 vex 3478 . . . . . . . . . . . . . 14 𝑧 ∈ V
3 onelss 6406 . . . . . . . . . . . . . . 15 (𝑧 ∈ On → (𝑦𝑧𝑦𝑧))
43imp 407 . . . . . . . . . . . . . 14 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
5 ssdomg 8998 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑦𝑧𝑦𝑧))
62, 4, 5mpsyl 68 . . . . . . . . . . . . 13 ((𝑧 ∈ On ∧ 𝑦𝑧) → 𝑦𝑧)
71, 6jca 512 . . . . . . . . . . . 12 ((𝑧 ∈ On ∧ 𝑦𝑧) → (𝑦 ∈ On ∧ 𝑦𝑧))
8 domsdomtr 9114 . . . . . . . . . . . . . 14 ((𝑦𝑧𝑧𝐴) → 𝑦𝐴)
98anim2i 617 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ (𝑦𝑧𝑧𝐴)) → (𝑦 ∈ On ∧ 𝑦𝐴))
109anassrs 468 . . . . . . . . . . . 12 (((𝑦 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
117, 10sylan 580 . . . . . . . . . . 11 (((𝑧 ∈ On ∧ 𝑦𝑧) ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴))
1211exp31 420 . . . . . . . . . 10 (𝑧 ∈ On → (𝑦𝑧 → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1312com12 32 . . . . . . . . 9 (𝑦𝑧 → (𝑧 ∈ On → (𝑧𝐴 → (𝑦 ∈ On ∧ 𝑦𝐴))))
1413impd 411 . . . . . . . 8 (𝑦𝑧 → ((𝑧 ∈ On ∧ 𝑧𝐴) → (𝑦 ∈ On ∧ 𝑦𝐴)))
15 breq1 5151 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1615elrab 3683 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑧 ∈ On ∧ 𝑧𝐴))
17 breq1 5151 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1817elrab 3683 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} ↔ (𝑦 ∈ On ∧ 𝑦𝐴))
1914, 16, 183imtr4g 295 . . . . . . 7 (𝑦𝑧 → (𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴} → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2019imp 407 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
2120gen2 1798 . . . . 5 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴})
22 dftr2 5267 . . . . 5 (Tr {𝑥 ∈ On ∣ 𝑥𝐴} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑥𝐴}))
2321, 22mpbir 230 . . . 4 Tr {𝑥 ∈ On ∣ 𝑥𝐴}
24 ssrab2 4077 . . . 4 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On
25 ordon 7766 . . . 4 Ord On
26 trssord 6381 . . . 4 ((Tr {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ On ∧ Ord On) → Ord {𝑥 ∈ On ∣ 𝑥𝐴})
2723, 24, 25, 26mp3an 1461 . . 3 Ord {𝑥 ∈ On ∣ 𝑥𝐴}
28 hartogs 9541 . . . 4 (𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
29 sdomdom 8978 . . . . . . 7 (𝑥𝐴𝑥𝐴)
3029a1i 11 . . . . . 6 (𝑥 ∈ On → (𝑥𝐴𝑥𝐴))
3130ss2rabi 4074 . . . . 5 {𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥𝐴}
32 ssexg 5323 . . . . 5 (({𝑥 ∈ On ∣ 𝑥𝐴} ⊆ {𝑥 ∈ On ∣ 𝑥𝐴} ∧ {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On) → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
3331, 32mpan 688 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
34 elong 6372 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
3528, 33, 343syl 18 . . 3 (𝐴 ∈ V → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ Ord {𝑥 ∈ On ∣ 𝑥𝐴}))
3627, 35mpbiri 257 . 2 (𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
37 0elon 6418 . . . 4 ∅ ∈ On
38 eleq1 2821 . . . 4 ({𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → ({𝑥 ∈ On ∣ 𝑥𝐴} ∈ On ↔ ∅ ∈ On))
3937, 38mpbiri 257 . . 3 ({𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
40 df-ne 2941 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅)
41 rabn0 4385 . . . . 5 ({𝑥 ∈ On ∣ 𝑥𝐴} ≠ ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
4240, 41bitr3i 276 . . . 4 (¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅ ↔ ∃𝑥 ∈ On 𝑥𝐴)
43 relsdom 8948 . . . . . 6 Rel ≺
4443brrelex2i 5733 . . . . 5 (𝑥𝐴𝐴 ∈ V)
4544rexlimivw 3151 . . . 4 (∃𝑥 ∈ On 𝑥𝐴𝐴 ∈ V)
4642, 45sylbi 216 . . 3 (¬ {𝑥 ∈ On ∣ 𝑥𝐴} = ∅ → 𝐴 ∈ V)
4739, 46nsyl4 158 . 2 𝐴 ∈ V → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On)
4836, 47pm2.61i 182 1 {𝑥 ∈ On ∣ 𝑥𝐴} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  wne 2940  wrex 3070  {crab 3432  Vcvv 3474  wss 3948  c0 4322   class class class wbr 5148  Tr wtr 5265  Ord word 6363  Oncon0 6364  cdom 8939  csdm 8940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-oi 9507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator