![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carden2a | Structured version Visualization version GIF version |
Description: If two sets have equal nonzero cardinalities, then they are equinumerous. This assertion and carden2b 9958 are meant to replace carden 10542 in ZF without AC. (Contributed by Mario Carneiro, 9-Jan-2013.) |
Ref | Expression |
---|---|
carden2a | ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2941 | . 2 ⊢ ((card‘𝐴) ≠ ∅ ↔ ¬ (card‘𝐴) = ∅) | |
2 | ndmfv 6923 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ dom card → (card‘𝐵) = ∅) | |
3 | eqeq1 2736 | . . . . . . 7 ⊢ ((card‘𝐴) = (card‘𝐵) → ((card‘𝐴) = ∅ ↔ (card‘𝐵) = ∅)) | |
4 | 2, 3 | imbitrrid 245 | . . . . . 6 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ 𝐵 ∈ dom card → (card‘𝐴) = ∅)) |
5 | 4 | con1d 145 | . . . . 5 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ (card‘𝐴) = ∅ → 𝐵 ∈ dom card)) |
6 | 5 | imp 407 | . . . 4 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐵 ∈ dom card) |
7 | cardid2 9944 | . . . 4 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → (card‘𝐵) ≈ 𝐵) |
9 | breq2 5151 | . . . . 5 ⊢ ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ (card‘𝐵))) | |
10 | entr 8998 | . . . . . 6 ⊢ ((𝐴 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴 ≈ 𝐵) | |
11 | 10 | ex 413 | . . . . 5 ⊢ (𝐴 ≈ (card‘𝐵) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵)) |
12 | 9, 11 | syl6bi 252 | . . . 4 ⊢ ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵))) |
13 | cardid2 9944 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
14 | ndmfv 6923 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
15 | 13, 14 | nsyl4 158 | . . . . 5 ⊢ (¬ (card‘𝐴) = ∅ → (card‘𝐴) ≈ 𝐴) |
16 | 15 | ensymd 8997 | . . . 4 ⊢ (¬ (card‘𝐴) = ∅ → 𝐴 ≈ (card‘𝐴)) |
17 | 12, 16 | impel 506 | . . 3 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵)) |
18 | 8, 17 | mpd 15 | . 2 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐴 ≈ 𝐵) |
19 | 1, 18 | sylan2b 594 | 1 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 class class class wbr 5147 dom cdm 5675 ‘cfv 6540 ≈ cen 8932 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-er 8699 df-en 8936 df-card 9930 |
This theorem is referenced by: card1 9959 |
Copyright terms: Public domain | W3C validator |