![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carden2a | Structured version Visualization version GIF version |
Description: If two sets have equal nonzero cardinalities, then they are equinumerous. This assertion and carden2b 9988 are meant to replace carden 10572 in ZF without AC. (Contributed by Mario Carneiro, 9-Jan-2013.) |
Ref | Expression |
---|---|
carden2a | ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2931 | . 2 ⊢ ((card‘𝐴) ≠ ∅ ↔ ¬ (card‘𝐴) = ∅) | |
2 | ndmfv 6925 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ dom card → (card‘𝐵) = ∅) | |
3 | eqeq1 2729 | . . . . . . 7 ⊢ ((card‘𝐴) = (card‘𝐵) → ((card‘𝐴) = ∅ ↔ (card‘𝐵) = ∅)) | |
4 | 2, 3 | imbitrrid 245 | . . . . . 6 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ 𝐵 ∈ dom card → (card‘𝐴) = ∅)) |
5 | 4 | con1d 145 | . . . . 5 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ (card‘𝐴) = ∅ → 𝐵 ∈ dom card)) |
6 | 5 | imp 405 | . . . 4 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐵 ∈ dom card) |
7 | cardid2 9974 | . . . 4 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → (card‘𝐵) ≈ 𝐵) |
9 | breq2 5145 | . . . . 5 ⊢ ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ (card‘𝐵))) | |
10 | entr 9023 | . . . . . 6 ⊢ ((𝐴 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴 ≈ 𝐵) | |
11 | 10 | ex 411 | . . . . 5 ⊢ (𝐴 ≈ (card‘𝐵) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵)) |
12 | 9, 11 | biimtrdi 252 | . . . 4 ⊢ ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵))) |
13 | cardid2 9974 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
14 | ndmfv 6925 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
15 | 13, 14 | nsyl4 158 | . . . . 5 ⊢ (¬ (card‘𝐴) = ∅ → (card‘𝐴) ≈ 𝐴) |
16 | 15 | ensymd 9022 | . . . 4 ⊢ (¬ (card‘𝐴) = ∅ → 𝐴 ≈ (card‘𝐴)) |
17 | 12, 16 | impel 504 | . . 3 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵)) |
18 | 8, 17 | mpd 15 | . 2 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐴 ≈ 𝐵) |
19 | 1, 18 | sylan2b 592 | 1 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∅c0 4316 class class class wbr 5141 dom cdm 5670 ‘cfv 6541 ≈ cen 8957 cardccrd 9956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-ord 6365 df-on 6366 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-er 8721 df-en 8961 df-card 9960 |
This theorem is referenced by: card1 9989 |
Copyright terms: Public domain | W3C validator |