MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden2a Structured version   Visualization version   GIF version

Theorem carden2a 9724
Description: If two sets have equal nonzero cardinalities, then they are equinumerous. This assertion and carden2b 9725 are meant to replace carden 10307 in ZF without AC. (Contributed by Mario Carneiro, 9-Jan-2013.)
Assertion
Ref Expression
carden2a (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴𝐵)

Proof of Theorem carden2a
StepHypRef Expression
1 df-ne 2944 . 2 ((card‘𝐴) ≠ ∅ ↔ ¬ (card‘𝐴) = ∅)
2 ndmfv 6804 . . . . . . 7 𝐵 ∈ dom card → (card‘𝐵) = ∅)
3 eqeq1 2742 . . . . . . 7 ((card‘𝐴) = (card‘𝐵) → ((card‘𝐴) = ∅ ↔ (card‘𝐵) = ∅))
42, 3syl5ibr 245 . . . . . 6 ((card‘𝐴) = (card‘𝐵) → (¬ 𝐵 ∈ dom card → (card‘𝐴) = ∅))
54con1d 145 . . . . 5 ((card‘𝐴) = (card‘𝐵) → (¬ (card‘𝐴) = ∅ → 𝐵 ∈ dom card))
65imp 407 . . . 4 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐵 ∈ dom card)
7 cardid2 9711 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
86, 7syl 17 . . 3 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → (card‘𝐵) ≈ 𝐵)
9 breq2 5078 . . . . 5 ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ (card‘𝐵)))
10 entr 8792 . . . . . 6 ((𝐴 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴𝐵)
1110ex 413 . . . . 5 (𝐴 ≈ (card‘𝐵) → ((card‘𝐵) ≈ 𝐵𝐴𝐵))
129, 11syl6bi 252 . . . 4 ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) → ((card‘𝐵) ≈ 𝐵𝐴𝐵)))
13 cardid2 9711 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
14 ndmfv 6804 . . . . . 6 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1513, 14nsyl4 158 . . . . 5 (¬ (card‘𝐴) = ∅ → (card‘𝐴) ≈ 𝐴)
1615ensymd 8791 . . . 4 (¬ (card‘𝐴) = ∅ → 𝐴 ≈ (card‘𝐴))
1712, 16impel 506 . . 3 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → ((card‘𝐵) ≈ 𝐵𝐴𝐵))
188, 17mpd 15 . 2 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐴𝐵)
191, 18sylan2b 594 1 (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  c0 4256   class class class wbr 5074  dom cdm 5589  cfv 6433  cen 8730  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-card 9697
This theorem is referenced by:  card1  9726
  Copyright terms: Public domain W3C validator