MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden2a Structured version   Visualization version   GIF version

Theorem carden2a 9980
Description: If two sets have equal nonzero cardinalities, then they are equinumerous. This assertion and carden2b 9981 are meant to replace carden 10565 in ZF without AC. (Contributed by Mario Carneiro, 9-Jan-2013.)
Assertion
Ref Expression
carden2a (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴𝐵)

Proof of Theorem carden2a
StepHypRef Expression
1 df-ne 2933 . 2 ((card‘𝐴) ≠ ∅ ↔ ¬ (card‘𝐴) = ∅)
2 ndmfv 6911 . . . . . . 7 𝐵 ∈ dom card → (card‘𝐵) = ∅)
3 eqeq1 2739 . . . . . . 7 ((card‘𝐴) = (card‘𝐵) → ((card‘𝐴) = ∅ ↔ (card‘𝐵) = ∅))
42, 3imbitrrid 246 . . . . . 6 ((card‘𝐴) = (card‘𝐵) → (¬ 𝐵 ∈ dom card → (card‘𝐴) = ∅))
54con1d 145 . . . . 5 ((card‘𝐴) = (card‘𝐵) → (¬ (card‘𝐴) = ∅ → 𝐵 ∈ dom card))
65imp 406 . . . 4 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐵 ∈ dom card)
7 cardid2 9967 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
86, 7syl 17 . . 3 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → (card‘𝐵) ≈ 𝐵)
9 breq2 5123 . . . . 5 ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ (card‘𝐵)))
10 entr 9020 . . . . . 6 ((𝐴 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴𝐵)
1110ex 412 . . . . 5 (𝐴 ≈ (card‘𝐵) → ((card‘𝐵) ≈ 𝐵𝐴𝐵))
129, 11biimtrdi 253 . . . 4 ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) → ((card‘𝐵) ≈ 𝐵𝐴𝐵)))
13 cardid2 9967 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
14 ndmfv 6911 . . . . . 6 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1513, 14nsyl4 158 . . . . 5 (¬ (card‘𝐴) = ∅ → (card‘𝐴) ≈ 𝐴)
1615ensymd 9019 . . . 4 (¬ (card‘𝐴) = ∅ → 𝐴 ≈ (card‘𝐴))
1712, 16impel 505 . . 3 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → ((card‘𝐵) ≈ 𝐵𝐴𝐵))
188, 17mpd 15 . 2 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐴𝐵)
191, 18sylan2b 594 1 (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  c0 4308   class class class wbr 5119  dom cdm 5654  cfv 6531  cen 8956  cardccrd 9949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-card 9953
This theorem is referenced by:  card1  9982
  Copyright terms: Public domain W3C validator