![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carden2a | Structured version Visualization version GIF version |
Description: If two sets have equal nonzero cardinalities, then they are equinumerous. This assertion and carden2b 10005 are meant to replace carden 10589 in ZF without AC. (Contributed by Mario Carneiro, 9-Jan-2013.) |
Ref | Expression |
---|---|
carden2a | ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2939 | . 2 ⊢ ((card‘𝐴) ≠ ∅ ↔ ¬ (card‘𝐴) = ∅) | |
2 | ndmfv 6942 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ dom card → (card‘𝐵) = ∅) | |
3 | eqeq1 2739 | . . . . . . 7 ⊢ ((card‘𝐴) = (card‘𝐵) → ((card‘𝐴) = ∅ ↔ (card‘𝐵) = ∅)) | |
4 | 2, 3 | imbitrrid 246 | . . . . . 6 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ 𝐵 ∈ dom card → (card‘𝐴) = ∅)) |
5 | 4 | con1d 145 | . . . . 5 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ (card‘𝐴) = ∅ → 𝐵 ∈ dom card)) |
6 | 5 | imp 406 | . . . 4 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐵 ∈ dom card) |
7 | cardid2 9991 | . . . 4 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → (card‘𝐵) ≈ 𝐵) |
9 | breq2 5152 | . . . . 5 ⊢ ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ (card‘𝐵))) | |
10 | entr 9045 | . . . . . 6 ⊢ ((𝐴 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴 ≈ 𝐵) | |
11 | 10 | ex 412 | . . . . 5 ⊢ (𝐴 ≈ (card‘𝐵) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵)) |
12 | 9, 11 | biimtrdi 253 | . . . 4 ⊢ ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵))) |
13 | cardid2 9991 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
14 | ndmfv 6942 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
15 | 13, 14 | nsyl4 158 | . . . . 5 ⊢ (¬ (card‘𝐴) = ∅ → (card‘𝐴) ≈ 𝐴) |
16 | 15 | ensymd 9044 | . . . 4 ⊢ (¬ (card‘𝐴) = ∅ → 𝐴 ≈ (card‘𝐴)) |
17 | 12, 16 | impel 505 | . . 3 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵)) |
18 | 8, 17 | mpd 15 | . 2 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐴 ≈ 𝐵) |
19 | 1, 18 | sylan2b 594 | 1 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 ≈ cen 8981 cardccrd 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-card 9977 |
This theorem is referenced by: card1 10006 |
Copyright terms: Public domain | W3C validator |