MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden2a Structured version   Visualization version   GIF version

Theorem carden2a 9655
Description: If two sets have equal nonzero cardinalities, then they are equinumerous. This assertion and carden2b 9656 are meant to replace carden 10238 in ZF without AC. (Contributed by Mario Carneiro, 9-Jan-2013.)
Assertion
Ref Expression
carden2a (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴𝐵)

Proof of Theorem carden2a
StepHypRef Expression
1 df-ne 2943 . 2 ((card‘𝐴) ≠ ∅ ↔ ¬ (card‘𝐴) = ∅)
2 ndmfv 6786 . . . . . . 7 𝐵 ∈ dom card → (card‘𝐵) = ∅)
3 eqeq1 2742 . . . . . . 7 ((card‘𝐴) = (card‘𝐵) → ((card‘𝐴) = ∅ ↔ (card‘𝐵) = ∅))
42, 3syl5ibr 245 . . . . . 6 ((card‘𝐴) = (card‘𝐵) → (¬ 𝐵 ∈ dom card → (card‘𝐴) = ∅))
54con1d 145 . . . . 5 ((card‘𝐴) = (card‘𝐵) → (¬ (card‘𝐴) = ∅ → 𝐵 ∈ dom card))
65imp 406 . . . 4 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐵 ∈ dom card)
7 cardid2 9642 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
86, 7syl 17 . . 3 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → (card‘𝐵) ≈ 𝐵)
9 breq2 5074 . . . . 5 ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ (card‘𝐵)))
10 entr 8747 . . . . . 6 ((𝐴 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴𝐵)
1110ex 412 . . . . 5 (𝐴 ≈ (card‘𝐵) → ((card‘𝐵) ≈ 𝐵𝐴𝐵))
129, 11syl6bi 252 . . . 4 ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) → ((card‘𝐵) ≈ 𝐵𝐴𝐵)))
13 cardid2 9642 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
14 ndmfv 6786 . . . . . 6 𝐴 ∈ dom card → (card‘𝐴) = ∅)
1513, 14nsyl4 158 . . . . 5 (¬ (card‘𝐴) = ∅ → (card‘𝐴) ≈ 𝐴)
1615ensymd 8746 . . . 4 (¬ (card‘𝐴) = ∅ → 𝐴 ≈ (card‘𝐴))
1712, 16impel 505 . . 3 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → ((card‘𝐵) ≈ 𝐵𝐴𝐵))
188, 17mpd 15 . 2 (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐴𝐵)
191, 18sylan2b 593 1 (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  c0 4253   class class class wbr 5070  dom cdm 5580  cfv 6418  cen 8688  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-card 9628
This theorem is referenced by:  card1  9657
  Copyright terms: Public domain W3C validator