| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > carden2a | Structured version Visualization version GIF version | ||
| Description: If two sets have equal nonzero cardinalities, then they are equinumerous. This assertion and carden2b 9855 are meant to replace carden 10437 in ZF without AC. (Contributed by Mario Carneiro, 9-Jan-2013.) |
| Ref | Expression |
|---|---|
| carden2a | ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . 2 ⊢ ((card‘𝐴) ≠ ∅ ↔ ¬ (card‘𝐴) = ∅) | |
| 2 | ndmfv 6849 | . . . . . . 7 ⊢ (¬ 𝐵 ∈ dom card → (card‘𝐵) = ∅) | |
| 3 | eqeq1 2735 | . . . . . . 7 ⊢ ((card‘𝐴) = (card‘𝐵) → ((card‘𝐴) = ∅ ↔ (card‘𝐵) = ∅)) | |
| 4 | 2, 3 | imbitrrid 246 | . . . . . 6 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ 𝐵 ∈ dom card → (card‘𝐴) = ∅)) |
| 5 | 4 | con1d 145 | . . . . 5 ⊢ ((card‘𝐴) = (card‘𝐵) → (¬ (card‘𝐴) = ∅ → 𝐵 ∈ dom card)) |
| 6 | 5 | imp 406 | . . . 4 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐵 ∈ dom card) |
| 7 | cardid2 9841 | . . . 4 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → (card‘𝐵) ≈ 𝐵) |
| 9 | breq2 5090 | . . . . 5 ⊢ ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) ↔ 𝐴 ≈ (card‘𝐵))) | |
| 10 | entr 8923 | . . . . . 6 ⊢ ((𝐴 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴 ≈ 𝐵) | |
| 11 | 10 | ex 412 | . . . . 5 ⊢ (𝐴 ≈ (card‘𝐵) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵)) |
| 12 | 9, 11 | biimtrdi 253 | . . . 4 ⊢ ((card‘𝐴) = (card‘𝐵) → (𝐴 ≈ (card‘𝐴) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵))) |
| 13 | cardid2 9841 | . . . . . 6 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 14 | ndmfv 6849 | . . . . . 6 ⊢ (¬ 𝐴 ∈ dom card → (card‘𝐴) = ∅) | |
| 15 | 13, 14 | nsyl4 158 | . . . . 5 ⊢ (¬ (card‘𝐴) = ∅ → (card‘𝐴) ≈ 𝐴) |
| 16 | 15 | ensymd 8922 | . . . 4 ⊢ (¬ (card‘𝐴) = ∅ → 𝐴 ≈ (card‘𝐴)) |
| 17 | 12, 16 | impel 505 | . . 3 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → ((card‘𝐵) ≈ 𝐵 → 𝐴 ≈ 𝐵)) |
| 18 | 8, 17 | mpd 15 | . 2 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ ¬ (card‘𝐴) = ∅) → 𝐴 ≈ 𝐵) |
| 19 | 1, 18 | sylan2b 594 | 1 ⊢ (((card‘𝐴) = (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 ≈ cen 8861 cardccrd 9823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-card 9827 |
| This theorem is referenced by: card1 9856 |
| Copyright terms: Public domain | W3C validator |